During inflammation, the resulting oxidative stress can damage surrounding host tissue, forming protein-carbonyls. The SJL mouse is an experimental animal model used to assess in vivo toxicological responses to reactive oxygen and nitrogen species from inflammation. The goals of this study were to identify the major serum proteins modified with a carbonyl functionality and to identify the types of carbonyl adducts. To select for carbonyl-modified proteins, serum proteins were reacted with an aldehyde reactive probe that biotinylated the carbonyl modification. Modified proteins were enriched by avidin affinity and identified by two-dimensional liquid chromatography tandem MS. To identify the carbonyl modification, tryptic peptides from serum proteins were subjected to avidin affinity and the enriched modified peptides were analyzed by liquid chromatography tandem MS. It was noted that the aldehyde reactive probe tag created tag-specific fragment ions and neutral losses, and these extra features in the mass spectra inhibited identification of the modified peptides by database searching. To enhance the identification of carbonyl-modified peptides, a program was written that used the tag-specific fragment ions as a fingerprint (in silico filter program) and filtered the mass spectrometry data to highlight only modified peptides. A de novo-like database search algorithm was written (biotin peptide identification program) to identify the carbonyl-modified peptides. Although written specifically for our experiments, this software can be adapted to other modification and enrichment systems. Using these routines, a number of lipid peroxidation-derived protein carbonyls and direct side-chain oxidation proteins carbonyls were identified in SJL mouse serum. Molecular & Cellular
The pathogenesis of multi-organ dysfunction associated with severe acute SARS-CoV-2 infection remains poorly understood. Endothelial damage and microvascular thrombosis have been identified as drivers of COVID-19 severity, yet the mechanisms underlying these processes remain elusive. Here we show alterations in fluid shear stress-responsive pathways in critically ill COVID-19 adults as compared to non-COVID critically ill adults using a multiomics approach. Mechanistic in-vitro studies, using microvasculature-on-chip devices, reveal that plasma from critically ill COVID-19 adults induces fibrinogen-dependent red blood cell aggregation that mechanically damages the microvascular glycocalyx. This mechanism appears unique to COVID-19, as plasma from non-COVID sepsis patients demonstrates greater red blood cell membrane stiffness but induces less significant alterations in overall blood rheology. Multiomics analyses in pediatric patients with acute COVID-19 or the post-infectious multi-inflammatory syndrome in children (MIS-C) demonstrate little overlap in plasma cytokine and metabolite changes compared to adult COVID-19 patients. Instead, pediatric acute COVID-19 and MIS-C patients show alterations strongly associated with cytokine upregulation. These findings link high fibrinogen and red blood cell aggregation with endotheliopathy in adult COVID-19 patients and highlight differences in the key mediators of pathogenesis between adult and pediatric populations.
Characterization of blood flow rheology in hematological disorders is critical for understanding disease pathophysiology. Existing methods to measure blood rheological parameters are limited in their physiological relevance, and there is...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.