Management of agroecosystems with herbicides imposes strong selection pressures on weedy plants leading to the evolution of resistance against those herbicides. Resistance to glyphosate in populations of Lolium perenne L. ssp. multiflorum is increasingly common in California, USA, causing economic losses and the loss of effective management tools. To gain insights into the recent evolution of glyphosate resistance in L. perenne in perennial cropping systems of northwest California and to inform management, we investigated the frequency of glyphosate resistance and the genetic diversity and structure of 14 populations. The sampled populations contained frequencies of resistant plants ranging from 10% to 89%. Analyses of neutral genetic variation using microsatellite markers indicated very high genetic diversity within all populations regardless of resistance frequency. Genetic variation was distributed predominantly among individuals within populations rather than among populations or sampled counties, as would be expected for a wide‐ranging outcrossing weed species. Bayesian clustering analysis provided evidence of population structuring with extensive admixture between two genetic clusters or gene pools. High genetic diversity and admixture, and low differentiation between populations, strongly suggest the potential for spread of resistance through gene flow and the need for management that limits seed and pollen dispersal in L. perenne.
Control of weeds in cultivated crops is a pivotal component in successful crop production allowing higher yield and higher quality. In rice‐growing regions worldwide, weedy rice (Oryza sativa f. spontanea Rosh.) is a weed related to cultivated rice which infests rice fields. With populations across the globe evolving a suite of phenotypic traits characteristic of weeds and of cultivated rice, varying hypotheses exist on the origin of weedy rice. Here, we investigated the genetic diversity and possible origin of weedy rice in California using 98 simple sequence repeat (SSR) markers and an Rc gene‐specific marker. By employing phylogenetic clustering analysis, we show that four to five genetically distinct biotypes of weedy rice exist in California. Analysis of population structure and genetic distance among individuals reveals diverse evolutionary origins of California weedy rice biotypes, with ancestry derived from indica, aus, and japonica cultivated rice as well as possible contributions from weedy rice from the southern United States and wild rice. Because this diverse parentage primarily consists of weedy, wild, and cultivated rice not found in California, most existing weedy rice biotypes likely originated outside California.
The repeated evolution of herbicide resistance in weeds is an ongoing problem in agricultural regions across the world, and presents a unique system in which to study the origins and spread of adaptive traits across heterogeneous landscapes. Lolium perenne ssp. multiflorum (Lam.) (Italian ryegrass) is a widespread grass weed of agricultural crops that has repeatedly evolved resistance to herbicides across the world. In California, resistance to glyphosate has become increasingly common. To identify the mechanisms conferring glyphosate resistance in California populations of L. perenne and to gain insights into the evolutionary origins and spread of resistance in the region, we investigated the frequency of target-site mutations conferring resistance to glyphosate combined with the frequency of resistant individuals in 14 populations. A region of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) was sequenced in 401 individuals to assay for target site mutations. Seven unique alleles were detected at codon site 106, four of which have been previously shown to confer target-site-based resistance to glyphosate. Four different resistance alleles were detected, indicating that resistance to glyphosate has evolved multiple times in the region. In two populations, no EPSPS mutations were detected despite the presence of resistant plants, strongly suggesting that non-target-site-based mechanisms confer resistance to glyphosate in these populations. It is likely that resistance to glyphosate in these 14 California populations of L. perenne derives from at least five evolutionary origins, indicating that adaptive traits can evolve repeatedly over agricultural landscapes.
Reduced control of Italian ryegrass in California with herbicides has raised concerns about the evolution of populations with resistance to multiple herbicides. The goal of this study was to investigate variation among populations in plant response and resistance to glyphosate and glufosinate in Italian ryegrass from vineyards and orchards in northwest California. Population resistance screening using field-collected seed revealed up to 56.9% of individuals surviving glyphosate treatment at 1,678 g ae ha−1, and 53.5% of individuals surviving glufosinate treatment at 2,242 g ai ha−1in the same population. Frequencies of surviving plants within populations varied among screening times, particularly for glufosinate. Treating vegetatively propagated, genetically identical tillers with each herbicide pointed to separate mechanisms of resistance rather than cross-resistance to glyphosate and glufosinate. Dose–response experiments were conducted for each herbicide at two different screening times using a subset of populations, field-collected seed, and 10 herbicide rates. Plant survival and biomass were evaluated for each population at 3 wk after treatment and for plant regrowth 1 wk thereafter. Log-logistic regression models fit to the data were used to estimate LD50, GR50, and RD50values and calculate resistance indices (R/S ratios). Based on LD50values, the most highly resistant population was 14.4- to 19.2-fold more resistant to glyphosate than the most susceptible population tested but only 1.6- to 2.0-fold more resistant to glufosinate than the most susceptible population tested. Levels of resistance to both herbicides varied with screening time period and variable measured. Results indicate high frequencies of glyphosate-resistant plants but an early stage in the evolution of glufosinate resistance in some Italian ryegrass populations of northwest California.
Weedy rice is an emerging problem of cultivated rice in California. Infestations of weedy rice in cultivated rice result in yield loss and reduced grain quality. In this study, we aimed to evaluate growth and yield components of a widely grown cultivated rice variety in California in response to weedy rice competition. Greenhouse competition experiments in an additive design were conducted in 2017 and 2018 to determine the growth and yield components of ‘M-206’ rice and five weedy rice biotypes found in California at varying weed densities. M-206 rice initially grew at a faster relative growth rate of 0.53 cm−1 wk−1 under competitive conditions compared with 0.47 cm−1 wk−1 in the absence of weedy rice, but absolute and relative growth rates declined more rapidly under competitive conditions as plants approached maturity. At harvest, M-206 plant height was reduced 13% under competitive conditions, and M-206 tiller number was reduced 23% to 49%, depending on the weedy rice biotype it was competing with. Except for 100-grain weight, the growth traits and grain yield components of M-206 rice were reduced with increasing density of weedy rice. At the highest weed density measured, 40 plants m−2, M-206 rice had yield losses of 69% grain yield plant−1, 69% panicle weight, 59% fresh and dry biomass, 55% grain yield panicle−1, and 54% panicle number. The five evaluated weedy rice biotypes varied widely in early growth rates, height, biomass production, and grain yield, indicating differing competitive strategies. Most weedy rice biotypes produce plants with greater plant height, tiller number, panicle number, and above- and below-ground biomass compared with cultivated rice. Weedy rice biotypes produced 45% to 57% higher grain yield per plant than M-206 rice under competitive conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.