Pseudomonas aeruginosa colonizes the lungs of cystic fibrosis patients causing severe damage. This bacterium is intrinsically resistant to antibiotics and shows resistance against new antimicrobials and its virulence is controlled by the quorum-sensing response. Thus, attenuating its virulence by quorum quenching instead of inhibiting its growth has been proposed to minimize resistance; however, resistance against the canonical quorum quencher furanone C-30 can be achieved by mutations leading to increased efflux. In the present work, the effect of C-30 in the attenuation of the QS-controlled virulence factors elastase and pyocyanin was investigated in 50 isolates from cystic fibrosis patients. The results demonstrate that there is a high variability in the expression of both elastase and pyocyanin and that there are many naturally resistant C-30 strains. We report that the main mechanism of C-30 resistance in these strains was not due to enhanced efflux but a lack of permeability. Moreover, C-30 strongly inhibited the growth of several of the isolates studied, thus imposing high selective pressure for the generation of resistance.
The novel antimicrobial gallium is a nonredox iron III analogue with bacteriostatic and bactericidal properties, effective for the treatment of Pseudomonas aeruginosa in vitro and in vivo in mouse and rabbit infection models. It interferes with iron metabolism, transport, and presumably its homeostasis. As gallium exerts its antimicrobial effects by competing with iron, we hypothesized that it ultimately will lead cells to an iron deficiency status. As iron deficiency promotes the expression of virulence factors in vitro and promotes the pathogenicity of P. aeruginosa in animal models, it is anticipated that treatment with gallium will also promote the production of virulence factors. To test this hypothesis, the reference strain PA14 and two clinical isolates from patients with cystic fibrosis were exposed to gallium, and their production of pyocyanin, rhamnolipids, elastase, alkaline protease, alginate, pyoverdine, and biofilm was determined. Gallium treatment induced the production of all the virulence factors tested in the three strains except for pyoverdine. In addition, as the Ga-induced virulence factors are quorum sensing controlled, co-administration of Ga and the quorum quencher brominated furanone C-30 was assayed, and it was found that C-30 alleviated growth inhibition from gallium. Hence, adding both C-30 and gallium may be more effective in the treatment of P. aeruginosa infections.
Methanosarcina acetivorans, considered a strict anaerobic archaeon, was cultured in the presence of 0.4–1% O2 (atmospheric) for at least 6 months to generate air-adapted cells; further, the biochemical mechanisms developed to deal with O2 were characterized. Methane production and protein content, as indicators of cell growth, did not change in air-adapted cells respect to cells cultured under anoxia (control cells). In contrast, growth and methane production significantly decreased in control cells exposed for the first time to O2. Production of reactive oxygen species was 50 times lower in air-adapted cells versus control cells, suggesting enhanced anti-oxidant mechanisms that attenuated the O2 toxicity. In this regard, (i) the transcripts and activities of superoxide dismutase, catalase and peroxidase significantly increased; and (ii) the thiol-molecules (cysteine + coenzyme M-SH + sulfide) and polyphosphate contents were respectively 2 and 5 times higher in air-adapted cells versus anaerobic-control cells. Long-term cultures (18 days) of air-adapted cells exposed to 2% O2 exhibited the ability to form biofilms. These data indicate that M. acetivorans develops multiple mechanisms to contend with O2 and the associated oxidative stress, as also suggested by genome analyses for some methanogens.
To assess what defence mechanisms are triggered by Cd(2+) stress in Methanosarcina acetivorans, cells were cultured at different cadmium concentrations. In the presence of 100 μM CdCl2, the intracellular contents of cysteine, sulfide and coenzyme M increased, respectively, 8, 27 and 7 times versus control. Cells incubated for 24 h in medium with less cysteine and sulfide removed up to 80% of Cd(2+) added, whereas their cysteine and coenzyme M contents increased 160 and 84 times respectively. Cadmium accumulation (5.2 μmol/10-15 mg protein) resulted in an increase in methane synthesis of 4.5 times in cells grown on acetate. Total phosphate also increased under high (0.5 mM) Cd(2+) stress. On the other hand, cells preadapted to 54 μM CdCl2 and further exposed to > 0.63 mM CdCl2 developed the formation of a biofilm with an extracellular matrix constituted by carbohydrates, DNA and proteins. Biofilm cells were able to synthesize methane. The data suggested that increased intracellular contents of thiol molecules and total phosphate, and biofilm formation, are all involved in the cadmium resistance mechanisms in this marine archaeon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.