Mixtures of metals are often present in surface waters, leading to toxicity that is difficult to predict. To provide data for development of multimetal toxicity models, Daphnia magna neonates were exposed to individual metals (Cd, Cu, Ni, Zn) and to binary combinations of those metals in standard 48-h lethality tests conducted in US Environmental Protection Agency moderately hard reconstituted water with 3 mg dissolved organic carbon (DOC)/L added as Suwannee River fulvic acid. Toxicity tests were performed with mixtures of Ni and 1) Cd, which is considerably more toxic than Ni; 2) Cu, which is less toxic than Cd but more toxic than Ni; and 3) Zn, which has a toxicity threshold similar to Ni. For each combination of metals in the binary mixtures, the concentration of 1 metal was held constant while the second metal was varied through a series that ranged from nonlethal to lethal concentrations; then the roles of the metals were reversed. Inflection points of the concentration–response curves were compared to test for additivity of toxicity. Sublethal concentrations of Ni caused less-than-additive toxicity with Cd, slightly less-than-additive toxicity with Zn, and greater-than-additive toxicity with Cu. One explanation of these results might be competition among the metals for binding to biological ligands and/or dissolved organic matter. Therefore, models might have to incorporate sometimes competing chemical interactions to accurately predict metal-mixture toxicity.
In aquatic toxicology, a toxicity-prediction model is generally deemed acceptable if its predicted median lethal concentrations (LC50 values) or median effect concentrations (EC50 values) are within a factor of 2 of their paired, observed LC50 or EC50 values. However, that rule of thumb is based on results from only two studies: multiple LC50 values for the fathead minnow (Pimephales promelas) exposed to Cu in one type of exposure water, and multiple EC50 values for Daphnia magna exposed to Zn in another type of exposure water. We tested whether the factor-of-2 rule of thumb also is supported in a different dataset in which D. magna were exposed separately to Cd, Cu, Ni, or Zn. Overall, the factor-of-2 rule of thumb appeared to be a good guide to evaluating the acceptability of a toxicity model's underprediction or overprediction of observed LC50 or EC50 values in these acute toxicity tests.
In previous studies, variability was high among replicate acute cadmium (Cd) Daphnia magna lethality tests (e.g., >10-fold range of median effect concentrations [EC50s]), less among zinc (Zn) tests, and relatively low for copper (Cu) and nickel (Ni) tests. Although the US Environmental Protection Agency’s (USEPA’s) protocol includes starting toxicity tests with neonates less than 24 h old, the authors hypothesized that age-related differences in sensitivity to metals might occur even within that relatively narrow age range. Daphnia magna neonates were collected during 3 age windows (0–4 h, 10–14 h, and 20–24 h old) and immediately exposed to each of the 4 metals for 48 h using the standard USEPA protocol. In repeated sets of tests during different weeks, the Cd EC50 of the youngest neonates was approximately 10-fold greater than the EC50 of the oldest neonates (i.e., Cd was less toxic to the youngest neonates) and the EC50 of neonates aged 10 h to 14 h was intermediate. Age-related differences were negligible in Cu, Ni, and Zn tests. Therefore, variability in toxicity of Cd may partly be caused by temporal variability in neonate age at the start of toxicity tests. Decreasing the age range of D. magna used in toxicity tests could help to improve the accuracy and precision of toxicity models, particularly for metal mixtures.
Multiple metals are usually present in surface waters, sometimes leading to toxicity that currently is difficult to predict due to potentially non-additive mixture toxicity. Previous toxicity tests with Daphnia magna exposed to binary mixtures of Ni combined with Cd, Cu, or Zn demonstrated that Ni and Zn strongly protect against Cd toxicity, but Cu–Ni toxicity is more than additive, and Ni–Zn toxicity is slightly less than additive. To consider multiple metal–metal interactions, we exposed D. magna neonates to Cd, Cu, Ni, or Zn alone and in ternary Cd–Cu–Ni and Cd–Ni–Zn combinations in standard 48 h lethality tests. In these ternary mixtures, two metals were held constant, while the third metal was varied through a series that ranged from nonlethal to lethal concentrations. In Cd–Cu–Ni mixtures, the toxicity was less than additive, additive, or more than additive, depending on the concentration (or ion activity) of the varied metal and the additivity model (concentration-addition or independent-action) used to predict toxicity. In Cd–Ni–Zn mixtures, the toxicity was less than additive or approximately additive, depending on the concentration (or ion activity) of the varied metal but independent of the additivity model. These results demonstrate that complex interactions of potentially competing toxicity-controlling mechanisms can occur in ternary-metal mixtures but might be predicted by mechanistic bioavailability-based toxicity models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.