Currently there are few ideal methods for the characterization of nanoparticles in complex, environmental samples, leading to significant gaps in toxicity and exposure assessments of nanomaterials. Single particle-inductively coupled plasma-mass spectrometry (spICP-MS) is an emerging technique that can both size and count metal-containing nanoparticles. A major benefit of the spICP-MS method is its ability to characterize nanoparticles at concentrations relevant to the environment. This paper presents a practical guide on how to count and size nanoparticles using spICP-MS. Different methods are investigated for measuring transport efficiency (i.e. nebulization efficiency), an important term in the spICP-MS calculations. In addition, an alternative protocol is provided for determining particle size that broadens the applicability of the technique to all types of inorganic nanoparticles. Initial comparison, using well-characterized, monodisperse silver nanoparticles, showed the importance of having an accurate transport efficiency value when determining particle number concentration and, if using the newly presented protocol, particle size. Ultimately, the goal of this paper is to provide improvements to nanometrology by further developing this technique for the characterization of metal-containing nanoparticles.
Environmental risk assessments of engineered nanoparticles require thorough characterization of nanoparticles and their aggregates. Furthermore, quantitative analytical methods are required to determine environmental concentrations and enable both effect and exposure assessments. Many methods still need optimization and development, especially for new types of nanoparticles in water, but extensive experience can be gained from the fields of environmental chemistry of natural nanomaterials and from fundamental colloid chemistry. This review briefly describes most methods that are being exploited in nanoecotoxicology for analysis and characterization of nanomaterials. Methodological aspects are discussed in relation to the fields of nanometrology, particle size analysis and analytical chemistry. Differences in both the type of size measures (length, radius, aspect ratio, etc.), and the type of average or distributions afforded by the specific measures are compared. The strengths of single particle methods, such as electron microscopy and atomic force microscopy, with respect to imaging, shape determinations and application to particle process studies are discussed, together with their limitations in terms of counting statistics and sample preparation. Methods based on the measurement of particle populations are discussed in terms of their quantitative analyses, but the necessity of knowing their limitations in size range and concentration range is also considered. The advantage of combining complementary methods is highlighted.
Abstract-The risks associated with exposure to engineered nanomaterials (ENM) will be determined in part by the processes that control their environmental fate and transformation. These processes act not only on ENM that might be released directly into the environment, but more importantly also on ENM in consumer products and those that have been released from the product. The environmental fate and transformation are likely to differ significantly for each of these cases. The ENM released from actual direct use or from nanomaterial-containing products are much more relevant for ecotoxicological studies and risk assessment than pristine ENM. Released ENM may have a greater or lesser environmental impact than the starting materials, depending on the transformation reactions and the material. Almost nothing is known about the environmental behavior and the effects of released and transformed ENM, although these are the materials that are actually present in the environment. Further research is needed to determine whether the release and transformation processes result in a similar or more diverse set of ENM and ultimately how this affects environmental behavior. This article addresses these questions, using four hypothetical case studies that cover a wide range of ENM, their direct use or product applications, and their likely fate in the environment. Furthermore, a more definitive classification scheme for ENM should be adopted that reflects their surface condition, which is a result of both industrial and environmental processes acting on the ENM. The authors conclude that it is not possible to assess the risks associated with the use of ENM by investigating only the pristine form of the ENM, without considering alterations and transformation processes. Environ. Toxicol. Chem. 2012;31:50-59. # 2011 SETAC
Nanomaterials are critical components in the Earth system’s past, present, and future characteristics and behavior. They have been present since Earth’s origin in great abundance. Life, from the earliest cells to modern humans, has evolved in intimate association with naturally occurring nanomaterials. This synergy began to shift considerably with human industrialization. Particularly since the Industrial Revolution some two-and-a-half centuries ago, incidental nanomaterials (produced unintentionally by human activity) have been continuously produced and distributed worldwide. In some areas, they now rival the amount of naturally occurring nanomaterials. In the past half-century, engineered nanomaterials have been produced in very small amounts relative to the other two types of nanomaterials, but still in large enough quantities to make them a consequential component of the planet. All nanomaterials, regardless of their origin, have distinct chemical and physical properties throughout their size range, clearly setting them apart from their macroscopic equivalents and necessitating careful study. Following major advances in experimental, computational, analytical, and field approaches, it is becoming possible to better assess and understand all types and origins of nanomaterials in the Earth system. It is also now possible to frame their immediate and long-term impact on environmental and human health at local, regional, and global scales.
The quantification and characterization of natural, engineered, and incidental nano- to micro-size particles are beneficial to assessing a nanomaterial's performance in manufacturing, their fate and transport in the environment, and their potential risk to human health. Single particle inductively coupled plasma mass spectrometry (spICP-MS) can sensitively quantify the amount and size distribution of metallic nanoparticles suspended in aqueous matrices. To accurately obtain the nanoparticle size distribution, it is critical to have knowledge of the size detection limit (denoted as Dmin) using spICP-MS for a wide range of elements (other than a few available assessed ones) that have been or will be synthesized into engineered nanoparticles. Herein is described a method to estimate the size detection limit using spICP-MS and then apply it to nanoparticles composed of 40 different elements. The calculated Dmin values correspond well for a few of the elements with their detectable sizes that are available in the literature. Assuming each nanoparticle sample is composed of one element, Dmin values vary substantially among the 40 elements: Ta, U, Ir, Rh, Th, Ce, and Hf showed the lowest Dmin values, ≤10 nm; Bi, W, In, Pb, Pt, Ag, Au, Tl, Pd, Y, Ru, Cd, and Sb had Dmin in the range of 11-20 nm; Dmin values of Co, Sr, Sn, Zr, Ba, Te, Mo, Ni, V, Cu, Cr, Mg, Zn, Fe, Al, Li, and Ti were located at 21-80 nm; and Se, Ca, and Si showed high Dmin values, greater than 200 nm. A range of parameters that influence the Dmin, such as instrument sensitivity, nanoparticle density, and background noise, is demonstrated. It is observed that, when the background noise is low, the instrument sensitivity and nanoparticle density dominate the Dmin significantly. Approaches for reducing the Dmin, e.g., collision cell technology (CCT) and analyte isotope selection, are also discussed. To validate the Dmin estimation approach, size distributions for three engineered nanoparticle samples were obtained using spICP-MS. The use of this methodology confirms that the observed minimum detectable sizes are consistent with the calculated Dmin values. Overall, this work identifies the elements and nanoparticles to which current spICP-MS approaches can be applied, in order to enable quantification of very small nanoparticles at low concentrations in aqueous media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.