BackgroundThe United States' COVID-19 epidemic has grown extensively since February 2020, with substantial associated hospitalizations and mortality; New York State (NYS) has emerged as the national epicenter. We report on the extent of testing and test results during the month of March in NYS, along with risk factors, outcomes, and household prevalence among initial cases subject to indepth investigations.
MethodsSpecimen collection for COVID-19 testing was conducted in healthcare settings, community-based collection sites, and by home testing teams. Information on demographics, risk factors, and hospital outcomes of cases was obtained through epidemiological investigations and an electronic medical records match, and summarized descriptively. Active testing of initial case's households enabled estimation of household prevalence.
ResultsDuring March In NYS, outside of New York City, a total of 47,326 persons tested positive for SARS-CoV-2, out of 141,495 tests (33% test-positive), with the highest number of cases located in the metropolitan region counties. Among 229 initial cases diagnosed through March 12, by March 30 13% were hospitalized and 2% died. Testing conducted among 498 members of these case's households found prevalent infection among 57%; excluding first-reported cases 38%. In these homes, we found a significant age gradient in prevalence, from 23% among those <5 years to 68% among those ≥65 years (p<.0001).
ConclusionsNew York State faced a substantial and increasing COVID-19 outbreak during March 2020. The earliest cases had high levels of infection in their households and by the end of the month, the risks of hospitalization and death were high.
Multidrug resistant organisms (MDROs) are a serious threat to human health 1,2. Fast, accurate antibiotic susceptibility testing (AST) is a critical need in addressing escalating antibiotic resistance, since delays in identifying MDROs increase mortality 3,4 and use of broad-spectrum antibiotics, further selecting for resistant organisms. Yet current growth-based AST assays, such as broth microdilution 5 , require several days before informing key clinical decisions. Rapid AST would transform the care of infected patients while ensuring that our antibiotic arsenal is deployed as efficiently as possible. Growth-based assays are fundamentally constrained in speed by doubling time of the pathogen, and genotypic assays are limited by the ever-growing diversity and complexity of bacterial antibiotic resistance mechanisms. Here, we describe a rapid assay for combined Genotypic and Phenotypic AST through RNA detection, GoPhAST-R, that classifies strains with 94-99% accuracy by coupling machine learning analysis of early antibiotic-induced transcriptional changes with simultaneous detection of key genetic resistance determinants to increase accuracy of resistance detection, facilitate molecular epidemiology, and enable early detection of emerging resistance mechanisms. This two-pronged approach provides phenotypic AST 24-36 hours faster than standard workflows, with <4 hour assay time on a pilot instrument for hybridization-based multiplexed RNA detection implemented directly from positive blood cultures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.