Magnetic resonance imaging (MRI) is increasingly used in the assessment of the severity and progression of neurotrauma. We evaluated temporal and regional changes after mild fluid percussion (FPI) and controlled cortical impact (CCI) injury using T2-weighted-imaging (T2WI) and diffusion-weighted imaging (DWI) MRI over 7 days. Region of interest analysis of brain areas distant to the injury site (such as the hippocampus, retrosplenial and piriform cortices, and the thalamus) was undertaken. In the hippocampus of CCI animals, we found a slow increase (51%) in apparent diffusion coefficients (ADC) over 72 h, which returned to control values. The hippocampal T2 values in the CCI animals were elevated by 18% over the 7-day time course compared to control, indicative of edema formation. Histological analysis supported the lack of overt cellular loss in most brain regions after mild CCI injury. FPI animals showed a generalized decrease in hippocampal ADC values over the first 72 h, which then returned to sham levels, with decreased T2 values over the same period, which remained depressed at 7 days. Histological assessment of FPI animals revealed numerous shrunken cells in the hippocampus and thalamus, but other regions showed little damage. Increased immunohistochemical staining for microglia and astroglia at 7 days post-injury was greater in FPI animals within the affected brain regions. In summary, traumatic brain injury is less severe in mild CCI than FPI, based on the temporal events assessed with MRI.
In rats, feeding can be triggered experimentally using many approaches. Included among these are (1) food deprivation and (2) acute microinjection of the neurotransmitter L-glutamate (Glu) or its receptor agonist NMDA into the lateral hypothalamic area (LHA). Under both paradigms, the NMDA receptor (NMDA-R) within the LHA appears critically involved in transferring signals encoded by Glu to stimulate feeding. However, the intracellular mechanisms underlying this signal transfer are unknown. Because protein-tyrosine kinases (PTKs) participate in NMDA-R signaling mechanisms, we determined PTK involvement in LHA mechanisms underlying both types of feeding stimulation through food intake and biochemical measurements. LHA injections of PTK inhibitors significantly suppressed feeding elicited by LHA NMDA injection (up to 69%) but only mildly suppressed deprivation feeding (24%), suggesting that PTKs may be less critical for signals underlying this feeding behavior. Conversely, food deprivation but not NMDA injection produced marked increases in apparent activity for Src PTKs and in the expression of Pyk2, an Src-activating PTK. When considered together, the behavioral and biochemical results demonstrate that, although it is easier to suppress NMDA-elicited feeding by PTK inhibitors, food deprivation readily drives PTK activity in vivo. The latter result may reflect greater PTK recruitment by neurotransmitter receptors, distinct from the NMDA-R, that are activated during deprivation-elicited but not NMDA-elicited feeding. These results also demonstrate how the use of only one feeding stimulation paradigm may fail to reveal the true contributions of signaling molecules to pathways underlying feeding behavior in vivo.
Cells within the lateral hypothalamic area (LHA) are important in eating control. Glutamate or its analogs, kainic acid (KA) and N-methyl-d-aspartate (NMDA), elicit intense eating when microinjected there, and, conversely, LHA-administered NMDA receptor antagonists suppress deprivation- and NMDA-elicited eating. The subunit composition of LHA NMDA receptors (NMDA-Rs) mediating feeding, however, has not yet been determined. Identifying this is important, because distinct second messengers/modulators may be activated by NMDA-Rs with differing compositions. To begin to address this, we detected LHA NR2A and NR2B subunits by immunoblotting and NR2B subunits by immunohistochemistry using subunit-specific antibodies. To help determine whether NMDA-Rs mediating feeding might contain these subunits, we conducted behavioral studies using LHA-administered ifenprodil, an antagonist selective for NR2A- and/or NR2B-containing NMDA-Rs at the doses we used (0.001–100 nmol). Ifenprodil maximally suppressed NMDA- and deprivation-elicited feeding by 63 and 39%, respectively, but failed to suppress KA-elicited eating, suggesting its actions were behaviorally specific. Collectively, these results suggest that LHA NMDA-Rs, some of which contribute to feeding control, are composed of NR2A and/or NR2B subunits, and implicate NR2A- and/or NR2B-linked signal transduction in feeding behavior.
Central vasopressin (VP) release from magnocellular neuroendocrine cells (MNCs) in the supraoptic nucleus (SON) occurs from their somata and dendrites within the SON several hours after acute dehydration, and is an important autoregulatory mechanism influencing the systemic release of VP from MNC terminals in the posterior pituitary. To begin to explore the impact of polychlorinated biphenyls (PCBs) on brain mechanisms of body fluid regulation, both central and systemic VP release in response to acute dehydration were assessed in adult male rats fed the commercial PCB mixture Aroclor 1254 (30 mg/kg/day) for 15 days. Water intake and body weight were recorded daily, and on day 15 rats were dehydrated by intraperitoneal injection of 3.5 M saline (controls received physiological saline) and sacrificed 4-6 h later. Intranuclear VP release was measured in SON tissue punches in vitro, and systemic VP release was measured in the same rats. SON prepared from dehydrated PCB-naive rats released significantly more VP than did SON from control rats (4.9 +/- 0.8 vs. 2.7 +/- 0.4 pg/ml/microg). In contrast, while Aroclor 1254 exposure had no effect on baseline water intake, weight gain, or plasma osmolality responses to dehydration in PCB-fed rats, the SON failed to respond with increased VP release during dehydration. Consistent with previous studies showing an inhibitory effect of central VP on plasma VP output, dehydrated PCB-fed rats had an exaggerated 863% increase in plasma VP over basal levels, compared to a 241% increase in PCB-naive rats, suggesting that the MNC system is subtly disrupted.
Magnocellular neuroendocrine cells of the supraoptic nucleus (SON) release vasopressin (VP) systemically and locally during osmotic challenge. Although both central VP and nitric oxide (NO) release appear to reduce osmotically stimulated systemic VP release, it is unknown whether they interact locally in the SON to enhance somatodendritic release of VP, a phenomenon believed to regulate systemic VP release. In this study, we examined the contribution of VP receptor subtypes and NO to local VP release from the rat SON elicited by systemic injection of 3.5 m saline. Treatment of SON punches with VP receptor antagonists decreased osmotically stimulated intranuclear VP release. Similarly, blockade of NO production, or addition of NO scavengers, reduced stimulated VP, glutamate, and aspartate release, suggesting that local NO production and activity are critical for osmotically induced intranuclear VP and excitatory amino acid release. An increase in endogenous NO release from SON punches in response to hyperosmolality was confirmed by enzymatic NO assay. Consistent with enhanced glutamate and VP release from stimulated rat SON punches, the ionotropic glutamate receptor blocker kynurenate decreased stimulated local VP release without affecting NO release. These data suggest that NO enhances local VP release in part by facilitating local release of glutamate/aspartate and that glutamate receptor activity is required for the stimulation of local VP release by osmotic challenge. Collectively, these results suggest that local VP receptors, NO, and glutamatergic signaling mediate the amplification of intranuclear VP release during hyperosmolality and may contribute to efficient, but not exhaustive, systemic release of VP during osmoregulatory challenge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.