High area nickel and cobalt surfaces were assembled using modified Tobacco mosaic virus (TMV) templates. Rod-shaped TMV templates (300 x 18 nm) engineered to encode unique cysteine residues were self-assembled onto gold patterned surfaces in a vertically oriented fashion, producing a >10-fold increase in surface area. Electroless deposition of ionic metals onto surface-assembled virus templates produced uniform metal coatings up to 40 nm in thickness. Within a nickel-zinc battery system, the incorporation of virus-assembled electrode surfaces more than doubled the total electrode capacity. When combined, these findings demonstrate that surface-assembled virus templates provide a robust platform for the fabrication of oriented high surface area materials.
Improved depositions of various metal clusters onto a biomolecular template were achieved using a genetically engineered tobacco mosaic virus (TMV). Wild-type TMV was genetically altered to display multiple solid metal binding sites through the insertion of two cysteine residues within the amino-terminus of the virus coat protein. Gold, silver, and palladium clusters synthesized through in situ chemical reductions could be readily deposited onto the genetically modified template via the exposed cysteine-derived thiol groups. Metal cluster coatings on the cysteine-modified template were more densely deposited and stable than similar coatings on the unmodified wild-type template. Combined, these results confirm that the introduction of cysteine residues onto the outer surface of the TMV coat protein enhances the usefulness of this virus as a biotemplate for the deposition of metal clusters.
Nanoscaled Pt conductors were prepared from genetically engineered Tobacco mosaic virus (TMV) templates through Pt cluster deposition on the outer surface of the TMV. Pt clusters were synthesized and deposited on the engineered TMV with surface-exposed cysteine via the in situ mineralization of hexachloroplatinate anions. This deposition was driven by the specific binding between thiols and the solid metal clusters. In addition, Pt-thiolate adducts are suggested to form on the engineered TMV in aqueous solutions that work as nucleation sites for the formation of the Pt clusters. The specific binding between Pt clusters and the engineered TMV template was investigated using UV/vis spectrophotometry and quartz crystal microbalance (QCM) analysis. The electric conductance of Pt-deposited TMV was greater than that of the uncoated TMV virion particles. This result suggests the application of metal cluster-deposited engineered TMV in future electrical devices such as rapid response sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.