High area nickel and cobalt surfaces were assembled using modified Tobacco mosaic virus (TMV) templates. Rod-shaped TMV templates (300 x 18 nm) engineered to encode unique cysteine residues were self-assembled onto gold patterned surfaces in a vertically oriented fashion, producing a >10-fold increase in surface area. Electroless deposition of ionic metals onto surface-assembled virus templates produced uniform metal coatings up to 40 nm in thickness. Within a nickel-zinc battery system, the incorporation of virus-assembled electrode surfaces more than doubled the total electrode capacity. When combined, these findings demonstrate that surface-assembled virus templates provide a robust platform for the fabrication of oriented high surface area materials.
Solution blow spinning (SBS) is a technique that can be used to deposit fibers in situ at low cost for a variety of applications, which include biomedical materials and flexible electronics. This review is intended to provide an overview of the basic principles and applications of SBS. We first describe a method for creating a spinnable polymer solution and stable polymer solution jet by manipulating parameters such as polymer concentration and gas pressure. This method is based on fundamental insights, theoretical models, and empirical studies. We then discuss the unique bundled morphology and mechanical properties of fiber mats produced by SBS, and how they compare with electrospun fiber mats. Applications of SBS in biomedical engineering are highlighted, showing enhanced cell infiltration and proliferation versus electrospun fiber scaffolds and in situ deposition of biodegradable polymers. We also discuss the impact of SBS in applications involving textiles and electronics, including ceramic fibers and conductive composite materials. Strategies for future research are presented that take advantage of direct and rapid polymer deposition via cost-effective methods.
Wide interest in new hemostatic approaches has stemmed from unmet needs in the hospital and on the battlefield. Many current commercial hemostatic agents fail to fulfill the design requirements of safety, efficacy, cost, and storage. Academic focus has led to the improvement of existing strategies as well as new developments. This review will identify and discuss the three major classes of hemostatic approaches: biologically derived materials, synthetically derived materials, and intravenously administered hemostatic agents. The general class is first discussed, then specific approaches discussed in detail, including the hemostatic mechanisms and the advancement of the method. As hemostatic strategies evolve and synthetic-biologic interactions are more fully understood, current clinical methodologies will be replaced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.