PurposeThe purpose of our study was to assess the value of true lumen and false lumen hemodynamics compared to aortic morphological measurements for predicting adverse-aorta related outcomes (AARO) and aortic growth in patients with type B aortic dissection (TBAD).Materials and MethodsUsing an IRB approved protocol, we retrospectively identified patients with descending aorta (DAo) dissection at a large tertiary center. Inclusion criteria includes known TBAD with ≥ 6 months of clinical follow-up after initial presentation for TBAD or after ascending aorta intervention for patients with repaired type A dissection with residual type B aortic dissection (rTAAD). Patients with prior descending aorta intervention were excluded. The FL and TL of each patient were manually segmented from 4D flow MRI data, and 3D parametric maps of aortic hemodynamics were generated. Groups were divided based on (1) presence vs. absence of AARO and (2) growth rate ≥ vs. < 3 mm/year. True and false lumen kinetic energy (KE), stasis, peak velocity (PV), reverse/forward flow (RF/FF), FL to TL KE ratio, as well as index aortic diameter were compared between groups using the Mann–Whitney U or independent t-test.ResultsA total of n = 51 patients (age: 58.4 ± 15.0 years, M/F: 31/20) were included for analysis of AARO. This group contained n = 26 patients with TBAD and n = 25 patients with rTAAD. In the overall cohort, AARO patients had larger baseline diameters, lower FL-RF, FL stasis, TL-KE, TL-FF and TL-PV. Among patients with de novo TBAD, those with AAROs had larger baseline diameter, lower FL stasis and TL-PV. In both the overall cohort and in the subgroup of de novo TBAD, subjects with aortic growth ≥ 3mm/year, patients had a higher KE ratio.ConclusionOur study suggests that 4D flow MRI is a promising tool for TBAD evaluation that can provide information beyond traditional MRA or CTA. 4D flow has the potential to become an integral aspect of TBAD work-up, as hemodynamic assessment may allow earlier identification of at-risk patients who could benefit from earlier intervention.
Background 4D Flow MRI is a quantitative imaging technique to evaluate blood flow patterns; however, it is unclear how compressed sensing (CS) acceleration would impact aortic hemodynamic quantification in type B aortic dissection (TBAD). Purpose To investigate CS‐accelerated 4D Flow MRI performance compared to GRAPP‐accelerated 4D Flow MRI (GRAPPA) to evaluate aortic hemodynamics in TBAD. Study Type Prospective. Population Twelve TBAD patients, two volunteers. Field Strength/Sequence 1.5T, 3D time‐resolved cine phase‐contrast gradient echo sequence. Assessment GRAPPA (acceleration factor [R] = 2) and two CS‐accelerated (R = 7.7 [CS7.7] and 10.2 [CS10.2]) 4D Flow MRI scans were acquired twice for interscan reproducibility assessment. Voxelwise kinetic energy (KE), peak velocity (PV), forward flow (FF), reverse flow (RF), and stasis were calculated. Plane‐based mid‐lumen flows were quantified. Imaging times were recorded. Tests Repeated measures analysis of variance, Pearson correlation coefficients (r), intraclass correlation coefficients (ICC). P < 0.05 indicated statistical significance. Results The KE and FF in true lumen (TL) and PV in false lumen (FL) did not show difference among three acquisition types (P = 0.818, 0.065, 0.284 respectively). The PV and stasis in TL were higher, KE, FF, and RF in FL were lower, and stasis was higher in GRAPPA compared to CS7.7 and CS10.2. The RF was lower in GRAPPA compared to CS10.2. The correlation coefficients were strong in TL (r = [0.781–0.986]), and low to strong in FL (r = [0.347–0.948]). The ICC levels demonstrated moderate to excellent interscan reproducibility (0.732–0.989). The FF and net flow in mid‐descending aorta TL were significantly different between CS7.7 and CS10.2. Conclusion CS‐accelerated 4D Flow MRI has potential for clinical utilization with shorter scan times in TBAD. Our results suggest similar hemodynamic trends between acceleration types, but CS‐acceleration impacts KE, FF, RF, and stasis more in FL. Evidence Level: 1 Technical Efficacy: Stage 2
Background With improved life expectancy following Fontan palliation, there is an increasing population of patients with a total cavopulmonary connection. However, there is a poor understanding of which patients will experience Fontan failure and when. 4D flow MRI has identified several metrics of clinical interest, but longitudinal studies investigating hemodynamics in Fontan patients are lacking. Objective We aimed to investigate the relationship between flow distribution to the pulmonary arteries and regional hemodynamic metrics in a unique cohort with follow-up 4D flow MRI. Materials and methods Patients with > 6 months of 4D flow MRI follow-up were included. Flow distribution from the caval veins to pulmonary arteries was measured in addition to regional measures of peak velocity, viscous energy loss (ELmean and ELtot), and kinetic energy. Results Ten patients with total cavopulmonary connection (17.7 ± 8.8 years at baseline, follow-up: 4.4 ± 2.6 years) were included. Five subjects had unequal flow distribution from the IVC to the pulmonary arteries at baseline. Over time, these subjects tended to have larger increases in peak velocity (39.2% vs 6.6%), ELmean (11.6% vs -38.3%), ELtot (9.5% vs -36.2%), and kinetic energy (96.1% vs 36.3%) in the IVC. However, these differences were statistically insignificant. We found that changes in ELmean and ELtot were significantly associated with changes in peak velocity in the caval veins (R2 > 0.5, P < 0.001). Conclusion Unequal flow distribution from the IVC may drive increasing peak velocities and viscous energy losses, which have been associated with worse clinical outcomes. Changes in peak velocity may serve as a surrogate measure for changes in viscous energy loss.
Background Bicuspid aortic valve (BAV) disease is associated with increased risk of aortopathy. In addition to current intervention guidelines, BAV mediated changes in aortic 3D hemodynamics have been considered as risk stratification measures. We aimed to evaluate the association of 4D flow cardiovascular magnetic resonance (CMR) derived voxel-wise aortic reverse flow with aortic dilation and to investigate the role of aortic valve regurgitation (AR) and stenosis (AS) on reverse flow in systole and diastole. Methods 510 patients with BAV (52 ± 14 years) and 120 patients with trileaflet aortic valve (TAV) (61 ± 11 years) and mid-ascending aorta diameter (MAAD) > 35 mm who underwent CMR including 4D flow CMR were retrospectively included. An age and sex-matched healthy control cohort (n = 25, 49 ± 12 years) was selected. Voxel-wise reverse flow was calculated in the aorta and quantified by the mean reverse flow in the ascending aorta (AAo) during systole and diastole. Results BAV patients without AS and AR demonstrated significantly increased systolic and diastolic reverse flow (222% and 13% increases respectively, p < 0.01) compared to healthy controls and also had significantly increased systolic reverse flow compared to TAV patients with aortic dilation (79% increase, p < 0.01). In patients with isolated AR, systolic and diastolic AAo reverse flow increased significantly with AR severity (c = − 83.2 and c = − 205.6, p < 0.001). In patients with isolated AS, AS severity was associated with an increase in both systolic (c = − 253.1, p < 0.001) and diastolic (c = − 87.0, p = 0.02) AAo reverse flow. Right and left/right and non-coronary fusion phenotype showed elevated systolic reverse flow (> 17% increase, p < 0.01). Right and non-coronary fusion phenotype showed decreased diastolic reverse flow (> 27% decrease, p < 0.01). MAAD was an independent predictor of systolic (p < 0.001), but not diastolic, reverse flow (p > 0.1). Conclusion 4D flow CMR derived reverse flow associated with BAV was successfully captured even in the absence of AR or AS and in comparison to TAV patients with aortic dilation. Diastolic AAo reverse flow increased with AR severity while AS severity strongly correlated with increased systolic reverse flow in the AAo. Additionally, increasing MAAD was independently associated with increasing systolic AAo reverse flow. Thus, systolic AAo reverse flow may be a valuable metric for evaluating disease severity in future longitudinal outcome studies.
Purpose To validate a respiratory motion correction method called focused navigation (fNAV) for free‐running radial whole‐heart 4D flow MRI. Methods Using fNAV, respiratory signals derived from radial readouts are converted into three orthogonal displacements, which are then used to correct respiratory motion in 4D flow datasets. Hundred 4D flow acquisitions were simulated with non‐rigid respiratory motion and used for validation. The difference between generated and fNAV displacement coefficients was calculated. Vessel area and flow measurements from 4D flow reconstructions with (fNAV) and without (uncorrected) motion correction were compared to the motion‐free ground‐truth. In 25 patients, the same measurements were compared between fNAV 4D flow, 2D flow, navigator‐gated Cartesian 4D flow, and uncorrected 4D flow datasets. Results For simulated data, the average difference between generated and fNAV displacement coefficients was 0.04 ±$$ \pm $$ 0.32 mm and 0.31 ±$$ \pm $$ 0.35 mm in the x and y directions, respectively. In the z direction, this difference was region‐dependent (0.02 ±$$ \pm $$ 0.51 mm up to 5.85 ±$$ \pm $$ 3.41 mm). For all measurements (vessel area, net volume, and peak flow), the average difference from ground truth was higher for uncorrected 4D flow datasets (0.32 ±$$ \pm $$ 0.11 cm2, 11.1 ±$$ \pm $$ 3.5 mL, and 22.3 ±$$ \pm $$ 6.0 mL/s) than for fNAV 4D flow datasets (0.10 ±$$ \pm $$ 0.03 cm2, 2.6 ±$$ \pm $$ 0.7 mL, and 5.1 ±0$$ \pm 0 $$.9 mL/s, p < 0.05). In vivo, average vessel area measurements were 4.92 ±$$ \pm $$ 2.95 cm2, 5.06 ±$$ \pm $$ 2.64 cm2, 4.87 ±$$ \pm $$ 2.57 cm2, 4.87 ±$$ \pm $$ 2.69 cm2, for 2D flow and fNAV, navigator‐gated and uncorrected 4D flow datasets, respectively. In the ascending aorta, all 4D flow datasets except for the fNAV reconstruction had significantly different vessel area measurements from 2D flow. Overall, 2D flow datasets demonstrated the strongest correlation to fNAV 4D flow for both net volume (r2 = 0.92) and peak flow (r2 = 0.94), followed by navigator‐gated 4D flow (r2 = 0.83 and r2 = 0.86, respectively), and uncorrected 4D flow (r2 = 0.69 and r2 = 0.86, respectively). Conclusion fNAV corrected respiratory motion in vitro and in vivo, resulting in fNAV 4D flow measurements that are comparable to those derived from 2D flow and navigator‐gated Cartesian 4D flow datasets, with improvements over those from uncorrected 4D flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.