The global synthesis for antenna arrays that produce a desired radiation pattern is a scientific symmetry problem. This paper deals with the design of concentric ring antenna arrays to simplify the feeding system using a cophasal subarray configuration. This simplification in the feeding network is achieved by the reduction of phase shifters via a proper clustering of radiators applying one amplitude and one phase excitation by subarray in the array system. The array design for this geometry considers an optimization process based in differential evolution to reduce the side-lobe level, resulting in simplification of the feeding network. Simulation results based on CST Microwave Studio and HFSS are provided to verify the accuracy of the array model and to take mutual coupling into account. These simulations are provided using a circular patch as antenna element to generate a scannable array pattern over the elevation plane. Furthermore, an analysis of the manufacturing tolerances was made to verify the reliability of our design.
This paper illustrates the application of CORPS (coherently radiating periodic structures) for feeding 2-D phased arrays with a reduced number of phase shifter (PS) devices. Three design configurations using CORPS are proposed for 2-D phased arrays. The design model of phased array for these configurations considers the cophasal excitation required for this structure to set a strategic way for feeding the antenna elements and reducing the number of PS devices. Blocks of 2 × 3 and 4 × 7 CORPS networks depending on the configuration in the 2-D phased array are set strategically in the feeding network to generate the cophasal excitation required in the antenna elements. These design configurations used for feeding the antenna elements in the planar array geometry provide several advantages with respect to others in the scanning capability and the reduction of the number of PS devices of the array system. The full-wave simulation results for the proposed configurations in 2-D phased arrays provide a reduction in the number of PSs of until 69% for a scanning range of ±25° in elevation and ±40° in azimuth. The application of the raised cosine amplitude distribution could generate radiation patterns with a SLL_PEAK ≈ −19 dB and SLL_PEAK ≈ −23 dB for the design proposed configurations in all the scanning range.
This paper presents the application of CORPS (coherently radiating periodic structures) for feeding CRA (concentric rings array) with a reduced number of phase shifters. The proposed design technique for the structure of concentric rings provides a better scanning capability with respect to other existing configurations. This design technique utilizes 2 × 3 or 4 × 7 CORPS networks depending on the configuration or the number of antenna elements in the phased array system. These CORPS networks are set strategically in the feeding network to provide several advantages with respect to others in the scanning capability and the reduction of the number of phase shifters of the array system. The contribution of this paper is the full antenna system design of phased CRA for analyzing scanning and the reduction of phase shifters. The proposed phased array reduces the number of phase shifter devices in CRA for a scanning range of ±25° in the elevation plane. Differential evolution (DE) was applied to optimize the amplitudes of the proposed system. Several design cases were analyzed using full-wave simulation results to verify the phased array model and to take mutual coupling into account. Full-wave simulation results provide radiation patterns with low SLL in all scanning directions. The proposed phased array was validated by experimental measurements of the full antenna system prototype.
With the arrival of 5G wireless communication systems, there has been increased interest in exploring higher frequency bands above 6 GHz, up to millimeter-wave frequencies. Radio wave propagation at these higher frequencies can suffer from substantial Doppler impairments. The linear dependency of Doppler shifts with carrier frequencies make them challenging to use in high-mobility 5G cellular scenarios. Therefore, the Doppler power spectrum (DPS) characteristics and radio channel coherence time (CT) of the received signals are of great importance for 5G wireless systems. In this way, this paper presents the effects of a narrow beam phased antenna array in reducing the DPS (due to user movement) and, simultaneously, increasing the coherence time (CT). Functional and complete descriptive assessments of beamwidths versus the DPS and CT, through different elements and geometries of the phased antenna array, are analyzed. Moreover, in terms of CT and the DPS, better performance on the 5G cellular scenarios was obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.