A strategy to neutralize acidic pit lakes was tested in a field mesocosm of 4500 m(3) volume in the Acidic Pit Mine Lake 111 in Germany. Carbokalk, a byproduct from sugar production, and wheat straw was applied near to the sediment surface to stimulate in lake microbial alkalinity generation by sulfate and iron reduction. The biogeochemical processes at the sediment-water interface were studied over 3 years by geochemical monitoring and an in situ microprofiler. Substrate addition generated a reactive zone at the sediment surface where sulfate and iron reduction proceeded. Gross sulfate reduction reached values up to 10 mmol m(-2) d(-1). The neutralization rates between 27 and 0 meq m(-2) d(-1) were considerably lower than in previous laboratory experiments. The precipitation of ferric iron minerals resulted in a growing acidic sediment layer on top of the neutral sediment. In this layer sulfate reduction was observed but iron sulfides could not precipitate. In the anoxic sediment H2S was oxidized by ferric iron minerals. H2S partly diffused to the water column where it was oxidized. As a result the net formation of iron sulfides decreased after 1 year although gross sulfate reduction rates continued to be high. The rate of iron reduction exceeded the sulfate reduction rate, which resulted in high fluxes of ferrous iron out of the sediment.
Pore water of sediments plays an important role in aquatic systems as mediator and as the reactive zone between the sediment and surface water. Sediment pore waters with high ionic strength from acidified pit lakes were investigated to obtain information about the influence on the lake water quality. The analysis of soluble reactive phosphorus, nitrate, ammonium, silica, dissolved organic carbon, ferrous iron, sulfate, chloride, sodium, potassium, calcium, magnesium, manganese, and total dissolved iron was predetermined as the dataset required for evaluation of water quality. The data collection procedure was optimised by designing a methodology for stabilisation, dilution of pore water samples and adaptation of analytical methods. The developed methodology was evaluated with respect to the effort required in the laboratory under routine conditions. In the first round of analyses, 72% of 638 individual analyses from a random selection of pore water profiles were found to be within the calibration ranges. Remedial actions to handle the remaining 28% of invalid analytical results are exemplified. Differences between comparative analyses of some ions by continuous flow analysis, ion chromatography, and atomic emission spectroscopy were evaluated. The majority of results measured by ion chromatography differed on a highly significant level from results measured by atomic emission spectroscopy. Possible reasons, originating from the extreme sample matrix, are discussed. Finally, the designed methodology and the results of the method comparison are used to recommend the selection of analytical methods under specific conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.