In recent years, the Piwi pathway has been shown to regulate the silencing of mobile genetic elements. However, we know little about how Piwi pathways impose silencing and even less about trans-generational stability of Piwi-induced silencing. We demonstrate that the Caenorhabditis elegans Piwi protein PRG-1 can initiate an extremely stable form of gene silencing on a transgenic, single-copy target. This type of silencing is faithfully maintained over tens of generations in the absence of a functional Piwi pathway. Interestingly, RNAi can also trigger permanent gene silencing of a single-copy transgene and the phenomenon will be collectively referred to as RNA-induced epigenetic silencing (RNAe). RNAe can act in trans and is dependent on endogenous RNAi factors. The involvement of factors known to act in nuclear RNAi and the fact that RNAe is accompanied by repressive chromatin marks indicate that RNAe includes a transcriptional silencing component. Our results demonstrate that, at least in C. elegans, the Piwi pathway can impose a state of gene silencing that borders on 'permanently silent'. Such a property may be more widely conserved among Piwi pathways in different animals.
Analysis of minimal residual disease (MRD) can predict outcome in acute lymphoblastic leukemia (ALL). A large prospective study in childhood ALL has shown that MRD analysis using immunoglobulin (Ig) and T cell receptor (TCR) gene rearrangements as PCR targets can identify good and poor prognosis groups of substantial size that might profit from treatment adaptation. This MRD-based risk group assignment was based on the kinetics of tumor reduction. Consequently, the level of MRD has to be defined precisely in follow-up samples. However, current PCR methods do not allow easy and accurate quantification. We have tested 'real-time' quantitative PCR (RQ-PCR) using the TaqMan technology and compared its sensitivity with two conventional MRD-PCR methods, ie dot-blot and liquid hybridization of PCR amplified Ig/TCR gene rearrangements using clone-specific radioactive probes. In RQ-PCR the generated specific PCR product is measured at each cycle ('real-time') by cleavage of a fluorogenic intrinsic TaqMan probe. The junctional regions of rearranged Ig/TCR genes define the specificity and sensitivity of PCR-based MRD detection in ALL and are generally used to design a patient-specific probe. In the TaqMan technology we have chosen for the same approach with the design of patient-specific TaqMan probes at the position of the junctional regions. We developed primers/probe combinations for RQ-PCR analysis of a total of three IGH, two TCRD, two TCRG and three IGK gene rearrangements in four randomly chosen precursor-B-ALL. In one patient, 12 bone marrow follow-up samples were analyzed for the presence of MRD using an IGK PCR target. The sensitivity of the RQ-PCR technique appeared to be comparable to the dotblot method, but less sensitive than liquid hybridization. Although it still is a relatively expensive method, RQ-PCR allows sensitive, reproducible and quantitative MRD detection with a high throughput of samples providing possibilities for semi-automation. We consider this novel technique as an important step forward towards routinely performed diagnostic MRD studies.
Germ cells of most animals critically depend on piRNAs and Piwi proteins. Surprisingly, piRNAs in mouse oocytes are relatively rare and dispensable. We present compelling evidence for strong Piwi and piRNA expression in oocytes of other mammals. Human fetal oocytes express PIWIL2 and transposon-enriched piRNAs. Oocytes in adult human ovary express PIWIL1 and PIWIL2, whereas those in bovine ovary only express PIWIL1. In human, macaque, and bovine ovaries, we find piRNAs that resemble testis-borne pachytene piRNAs. Isolated bovine follicular oocytes were shown to contain abundant, relatively short piRNAs that preferentially target transposable elements. Using label-free quantitative proteome analysis, we show that these maturing oocytes strongly and specifically express the PIWIL3 protein, alongside other, known piRNA-pathway components. A piRNA pool is still present in early bovine embryos, revealing a potential impact of piRNAs on mammalian embryogenesis. Our results reveal that there are highly dynamic piRNA pathways in mammalian oocytes and early embryos.
Piwi-interacting RNAs (piRNAs) are germ line-specific small RNA molecules that have a function in genome defence and germ cell development. They associate with a specific class of Argonaute proteins, named Piwi, and function through an RNA interference-like mechanism. piRNAs carry a 2 0 -O-methyl modification at their 3 0 end, which is added by the Hen1 enzyme. We show that zebrafish hen1 is specifically expressed in germ cells and is essential for maintaining a female germ line, whereas it is dispensable in the testis. Hen1 protein localizes to nuage through its C-terminal domain, but is not required for nuage formation. In hen1 mutant testes, piRNAs become uridylated and adenylated. Uridylation frequency is highest on retro-transposon-derived piRNAs and is accompanied by decreased piRNA levels and mild derepression of transposon transcripts. Altogether, our data suggest the existence of a uridylation-mediated 3 0 -5 0 exonuclease activity acting on piRNAs in zebrafish germ cells, which is counteracted by nuage-bound Hen1 protein. This system discriminates between piRNA targets and is required for ovary development and fully efficient transposon silencing.
SummaryPhase separation represents an important form of subcellular compartmentalization. However, relatively little is known about how the formation or disassembly of such compartments is regulated. In zebrafish, the Balbiani body (Bb) and the germ plasm (Gp) are intimately linked phase-separated structures essential for germ cell specification and home to many germ cell-specific mRNAs and proteins. Throughout development, these structures occur as a single large aggregate (Bb), which disperses throughout oogenesis and upon fertilization accumulates again into relatively large assemblies (Gp). Formation of the Bb requires Bucky ball (Buc), a protein with prion-like properties. We found that the multi-tudor domain-containing protein Tdrd6a interacts with Buc, affecting its mobility and aggregation properties. Importantly, lack of this regulatory interaction leads to significant defects in germ cell development. Our work presents insights into how prion-like protein aggregations can be regulated and highlights the biological relevance of such regulatory events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.