Differences in the ability of opioid drugs to promote regulated endocytosis of m-opioid receptors are related to their tendency to produce drug tolerance and dependence. Here we show that drugspecific differences in receptor internalization are determined by a conserved, 10-residue sequence in the receptor's carboxylterminal cytoplasmic tail. Diverse opioids induce receptor phosphorylation at serine (S)375, present in the middle of this sequence, but opioids differ markedly in their ability to drive higher-order phosphorylation on flanking residues [threonine (T)370, T376, and T379]. Multi-phosphorylation is required for the endocytosispromoting activity of this sequence and occurs both sequentially and hierarchically, with S375 representing the initiating site. Higherorder phosphorylation involving T370, T376, and T379 specifically requires GRK2/3 isoforms, and the same sequence controls opioid receptor internalization in neurons. These results reveal a biochemical mechanism differentiating the endocytic activity of opioid drugs.
G protein receptor kinases (GRKs) and β-arrestins are key regulators of μ-opioid receptor (MOR) signaling and trafficking. We have previously shown that high-efficacy opioids such as DAMGO stimulate a GRK2/3-mediated multisite phosphorylation of conserved C-terminal tail serine and threonine residues, which facilitates internalization of the receptor. In contrast, morphine-induced phosphorylation of MOR is limited to Ser and is not sufficient to drive substantial receptor internalization. We report how specific multisite phosphorylation controlled the dynamics of GRK and β-arrestin interactions with MOR and show how such phosphorylation mediated receptor desensitization. We showed that GRK2/3 was recruited more quickly than was β-arrestin to a DAMGO-activated MOR. β-Arrestin recruitment required GRK2 activity and MOR phosphorylation, but GRK recruitment also depended on the phosphorylation sites in the C-terminal tail, specifically four serine and threonine residues within the TREHPSTANT motif. Our results also suggested that other residues outside this motif participated in the initial and transient recruitment of GRK and β-arrestins. We identified two components of high-efficacy agonist desensitization of MOR: a sustained component, which required GRK2-mediated phosphorylation and a potential soluble factor, and a rapid component, which was likely mediated by GRK2 but independent of receptor phosphorylation. Elucidating these complex receptor-effector interactions represents an important step toward a mechanistic understanding of MOR desensitization that leads to the development of tolerance and dependence.
This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.