The taxonomic position of five recA gene clusters of Burkholderia cepacia complex (Bcc) isolates was determined using a polyphasic taxonomic approach, The levels of 16S rRNA and recA gene sequence similarity, multilocus sequence typing (MLST) data and the intermediate DNA-DNA binding values demonstrated that these five clusters represented five novel species within the Bcc. Biochemical identification of these species is difficult, as is the case for most Bcc species. However, identification of these novel species can be accomplished through recA gene sequence analysis, MLST and BOX-PCR profiling and by recA RFLP analysis. For diagnostic laboratories, recA gene sequence analysis offers the best combination of accuracy and simplicity. Based on these results, we propose five novel Bcc species, Burkholderia latens sp. nov. (type strain FIRENZE 3(T) =LMG 24064(T) =CCUG 54555(T)), Burkholderia diffusa sp. nov. (type strain AU1075(T) =LMG 24065(T) =CCUG 54558(T)), Burkholderia arboris sp. nov. (type strain ES0263A(T) =LMG 24066(T) =CCUG 54561(T)), Burkholderia seminalis sp. nov. (type strain AU0475(T) =LMG 24067(T) =CCUG 54564 (T)) and Burkholderia metallica sp. nov. (type strain AU0553(T) =LMG 24068(T) =CCUG 54567(T)). In the present study, we also demonstrate that Burkholderia ubonensis should be considered a member of the Bcc
Shot-gun sequencing of DNA isolated from the environment and the assembly of metagenomes from the resulting data has considerably advanced the study of microbial diversity. However, the subsequent matching of these hypothetical metagenomes to cultivable microorganisms is a limitation of such cultivation-independent methods of population analysis. Using a nucleotide sequence-based genetic typing method, multilocus sequence typing, we were able for the first time to match clonal cultivable isolates to a published and controversial bacterial metagenome, Burkholderia SAR-1, which derived from analysis of the Sargasso Sea. The matching cultivable isolates were all associated with infection and geographically widely distributed; taxonomic analysis demonstrated they were members of Burkholderia cepacia complex Group K. Comparison of the Burkholderia SAR-1 metagenome to closely related B. cepacia complex genomes indicated that it was greater than 98% intact in terms of conserved genes, and it also shared complete sequence identity with the cultivable isolates at random loci beyond the genes sampled by the multilocus sequence typing. Two features of the extant cultivable clones support the argument that the Burkholderia SAR-1 sequence may have been a contaminant in the original metagenomic survey: (i) their growth in conditions reflective of sea water was poor, suggesting the ocean was not their preferred habitat, and (ii) several of the matching isolates were epidemiologically linked to outbreaks of infection that resulted from contaminated medical devices or products, indicating an adaptive fitness of this bacterial strain towards contamination-associated environments. The ability to match identical cultivable strains of bacteria to a hypothetical metagenome is a unique feature of nucleotide sequence-based microbial typing methods; such matching would not have been possible with more traditional methods of genetic typing, such as those based on pattern matching of genomic restriction fragments or amplified DNA fragments. Overall, we have taken the first steps in moving the status of the Burkholderia SAR-1 metagenome from a hypothetical entity towards the basis for life of cultivable strains that may now be analysed in conjunction with the assembled metagenomic sequence data by the wider scientific community.
Gradient diffusion methodology is preferred for routine susceptibility testing. Acquired resistance to fluoroquinolones was observed in A. cryaerophilus. Macrolides are not first-choice empirical antibiotics for Arcobacter infections. Tetracyclines can be suggested for treatment of documented Arcobacter-related gastrointestinal infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.