Adult stem cells (SCs) are at high risk of accumulating deleterious mutations because they reside and self-renew in adult tissues for extended periods. Little is known about how adult SCs sense and respond to DNA damage within their natural niche. Here, using mouse epidermis as a model, we define the functional consequences and the molecular mechanisms by which adult SCs respond to DNA damage. We show that multipotent hair-follicle-bulge SCs have two important mechanisms for increasing their resistance to DNA-damage-induced cell death: higher expression of the anti-apoptotic gene Bcl-2 and transient stabilization of p53 after DNA damage in bulge SCs. The attenuated p53 activation is the consequence of a faster DNA repair activity, mediated by a higher non-homologous end joining (NHEJ) activity, induced by the key protein DNA-PK. Because NHEJ is an error-prone mechanism, this novel characteristic of adult SCs may have important implications in cancer development and ageing.
High concentrations of polychlorinated biphenyls (PCBs) in polar bears from Svalbard have increased concern for that population's reproductive health. We examined whether there were associations between the plasma concentrations of PCBs and reproductive hormones [progesterone (P 4 ) and 17β-estradiol (E 2 )] in free-living female polar bears from Svalbard. Concentrations of P 4 depended on reproductive status, and concentrations were lowest in females with offspring-females with cubs and females with yearlings. In these females, the P 4 concentrations were positively correlated with plasma ΣPCBs (sum of all analyzed polychlorinated biphenyl congeners) concentrations. The ΣPCBs concentrations explained 27% of the variation in the P 4 concentrations. There were no correlations between ΣPCBs and E 2 and cortisol in any of the groups of polar bears, or between ΣPCBs and P 4 in single polar bears. Although the ΣPCBs-P 4 relationship in female polar bears with offspring is not evidence per se of a direct cause-effect association, the results indicate that PCBs may affect levels of P 4 in polar bear females. There is a clear need to further assess the hormone balance and population health of polar bears at Svalbard.
Normal sexual development and subsequent reproductive function are dependent on appropriate testosterone production and action. The regulation of steroid hormones, including androgens, can be influenced by both biological and environmental factors, including environmental chemicals. Concentrations of organochlorines are considerably greater in Svalbard polar bears than in polar bears from other regions. Between 1995 and 1998, samples were collected from 121 male polar bears (Ursus maritimus) from the Svalbard area. In this study, testosterone concentration variations were described for male polar bears during different seasons and for all age groups. To study possible relationships between plasma testosterone concentrations and biological factors, such as age, axial girth, and extractable plasma fat, and organochlorine contaminants including hexachlorocyclohexanes, hexachlorobenzene, chlordanes, p,p'-DDE, and 16 individual polychlorinated biphenyl (PCB) congeners, identical statistical analyses were performed on the total population and a subsample of reproductively active adults. Of the biological factors, axial girth showed a significant positive relationship and percentage extractable fat and a significant negative relationship with the testosterone concentrations. Both the epsilon pesticides and epsilon PCBs made significant negative contributions to the variation of the plasma testosterone concentration. The continuous presence of high concentrations of organochlorines in male polar bears throughout their life could possibly aggravate any reproductive toxicity that may have occurred during fetal and early postnatal development.
In this study, female goats were orally exposed to PCB126 or PCB153, at 49 ng/kg body weight per day and 98 mg/kg body weight per day respectively, from gestational day 60 until delivery at approximately day 150. Exposure of the offspring continued via lactation until postnatal day 40. Reproductive toxicity in the male offspring was studied by the evaluation of conventional reproductive endpoints as well as flow cytometric analyses of spermatogenesis and sperm chromatin structure. PCB153-treated animals showed a significant smaller testis diameter in comparison to the control group. Neither of the treated groups showed differences for plasma FSH in comparison to controls. PCB153-treated animals differed significantly from the control group with respect to plasma LH and testosterone levels, whereas PCB126-treated animals only differed from the controls in plasma testosterone concentrations. Neither the PCB126 nor the PCB153 group differed from the controls with respect to the conventional sperm parameters or testis histology. A significant lower ratio of interstitium area to seminiferous tubules area and proportion of diploid testis cells were observed for the PCB153 group. Sperm from PCB153-treated animals showed a significantly higher percentage of sperm with damaged DNA. From the results of the present study it was concluded that PCB153 was able to induce alterations in reproductive endpoints related to the hypothalamic-pituitary-axis as well as to the testis. The effects observed in male kids after a long-term maternal exposure to PCB153 support the concept that exposure to endocrine-disrupting compounds during foetal development may lead to adverse reproductive effects in adult life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.