We compute the accuracy of two implementations of the explicit planar free-surface boundary condition for 3D fourth-order velocity-stress staggered-grid finite differences, 1/2 grid apart vertically, in a uniform half-space. Due to the staggered grid, the closest distance between the free surface and some wave-field components for both implementations is 1/2-grid spacing. Overall, the differences in accuracy of the two implementations are small. When compared to a reflectivity solution computed at the staggered positions closest to the surface, the total misfit for all three components of the wave field is generally found to be larger for the free surface colocated with the normal stresses, compared to that for the free surface colocated with the xz and yz stresses. However, this trend is reversed when compared to the reflectivity solution exactly at the free surface (the misfit encountered in staggered-grid modeling). When the wave field is averaged across the free surface, thereby centering the staggered wave field exactly on the free surface, the free-surface condition colocated with the xz and yz stresses generates the smallest total misfit for increasing epicentral distance. For an epicentral distance/hypocentral depth of 10, the total misfit of this condition is about 15% smaller than that for the condition colocated with the normal stresses, mainly controlled by the misfit on the Rayleigh wave.
Rapid transitions in eruptive activity during lava dome eruptions pose significant challenges for monitoring and hazard assessment efforts. A comprehensive understanding of the dynamic evolution of active lava dome systems requires extensive multi-parametric datasets to fully constrain and understand rapid shifts in eruptive behavior, but few such datasets have been compiled. The Santiaguito lava dome complex, Guatemala, is a remarkable example of an open-vent volcanic system where continuous eruptive activity has historically been characterized by cycles of effusion and frequent, small to moderate, gas-and-ash explosions. During 2015-2016 the volcano experienced a rapid intensification of activity including large vulcanian explosions, frequently accompanied by pyroclastic density currents. Here we present a chronology of the eruptive activity at Santiaguito from November 2014 - May 2017, compiled from field observations (visual and thermal) and activity reports. We also present seismic and acoustic infrasound data collected during the same period, the longest and largest dataset collected at Santiaguito to date. Three major phases of eruptive activity took place during the study period. The first phase was consistent with the long-term eruptive behavior reported at Santiaguito by previous studies: lava effusion simultaneous with small (\textless1 km plume height), regular (25-200 minute intervals), gas-and-ash explosions. The second phase from July 2015 to September 2016 was defined by large (\textless5-7 km plume height) vulcanian explosions at irregular intervals and often accompanied by pyroclastic density currents. The third phase was marked by a return to effusive activity in October 2016 interspersed by small, gas-rich explosions. Over 6000 explosive events were recorded by seismic and infrasound during the study period and clearly delineate the three phases of activity at the volcano. Furthermore, we present the first documented geophysical evidence of explosion blast waves and volcano-tectonic earthquake swarms at Santiaguito. An important implication of observations is that negative trends in explosion rates at silicic lava dome eruptions cannot be used alone as an indicator of future weaker activity and reduced hazard. This case study of Santiaguito will serve as a useful foundation for future studies of long-lived lava dome eruptions featuring rapid transitions between effusive and explosive activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.