SummarySignaling nanodomains rely on spatial organization of proteins to allow controlled intracellular signaling. Examples include calcium release sites of cardiomyocytes where ryanodine receptors (RyRs) are clustered with their molecular partners. Localization microscopy has been crucial to visualizing these nanodomains but has been limited by brightness of markers, restricting the resolution and quantification of individual proteins clustered within. Harnessing the remarkable localization precision of DNA-PAINT (<10 nm), we visualized punctate labeling within these nanodomains, confirmed as single RyRs. RyR positions within sub-plasmalemmal nanodomains revealed how they are organized randomly into irregular clustering patterns leaving significant gaps occupied by accessory or regulatory proteins. RyR-inhibiting protein junctophilin-2 appeared highly concentrated adjacent to RyR channels. Analyzing these molecular maps showed significant variations in the co-clustering stoichiometry between junctophilin-2 and RyR, even between nearby nanodomains. This constitutes an additional level of complexity in RyR arrangement and regulation of calcium signaling, intrinsically built into the nanodomains.
. The mechanical properties of human adipose tissues and their relationships to the structure and composition of the extracellular matrix. Am J Physiol Endocrinol Metab 305: E1427-E1435, 2013. First published October 8, 2013 doi:10.1152/ajpendo.00111.2013.-Adipose tissue (AT) expansion in obesity is characterized by cellular growth and continuous extracellular matrix (ECM) remodeling with increased fibrillar collagen deposition. It is hypothesized that the matrix can inhibit cellular expansion and lipid storage. Therefore, it is important to fully characterize the ECM's biomechanical properties and its interactions with cells. In this study, we characterize and compare the mechanical properties of human subcutaneous and omental tissues, which have different physiological functions. AT was obtained from 44 subjects undergoing surgery. Force/extension and stress/relaxation data were obtained. The effects of osmotic challenge were measured to investigate the cellular contribution to tissue mechanics. Tissue structure and its response to tensile strain were determined using nonlinear microscopy. AT showed nonlinear stress/strain characteristics of up to a 30% strain. Comparing paired subcutaneous and omental samples (n ϭ 19), the moduli were lower in subcutaneous: initial 1.6 Ϯ 0.8 (means Ϯ SD) and 2.9 Ϯ 1.5 kPa (P ϭ 0.001), final 11.7 Ϯ 6.4 and 32 Ϯ 15.6 kPa (P Ͻ 0.001), respectively. The energy dissipation density was lower in subcutaneous AT (n ϭ 13): 0.1 Ϯ 0.1 and 0.3 Ϯ 0.2 kPa, respectively (P ϭ 0.006). Stress/relaxation followed a two-exponential time course. When the incubation medium was exchanged for deionized water in specimens held at 30% strain, force decreased by 31%, and the final modulus increased significantly. Nonlinear microscopy revealed collagen and elastin networks in close proximity to adipocytes and a larger-scale network of larger fiber bundles. There was considerable microscale heterogeneity in the response to strain in both cells and matrix fibers. These results suggest that subcutaneous AT has greater capacity for expansion and recovery from mechanical deformation than omental AT.
Brillouin light scattering (BLS) spectroscopy is a technique that is able to detect thermally excited phonons within a material. The speed of propagation of these phonons can be determined from the magnitude of the Brillouin frequency shift between incident and scattered light, thereby providing a measure of the mechanical properties of the material in the gigahertz range. The mechanical properties of the extracellular matrices of biological tissues and their constituent biopolymers are important for normal tissue function and disturbances in these properties are widely implicated in disease. BLS offers the prospect of measuring mechanical properties on a microscopic scale in living tissues, thereby providing insights into structure-function relationships under normal and pathological conditions. In this study, we investigated BLS in collagen and elastin-the fibrous proteins of the extracellular matrix (ECM). Measurements were made on type I collagen in rat tail tendon, type II collagen in articular cartilage and nuchal ligament elastin. The dependence of the BLS spectrum on fibre orientation was investigated in a backscattering geometry using a reflective substrate. Two peaks, a bulk mode arising from phonon propagation along a quasi-radial direction to the fibre axis and a mode parallel to the surface, depending on sample orientation relative to the fibre axis, could be distinguished. The latter peak was fitted to a model of wave propagation through a hexagonally symmetric elastic solid, and the five components of the elasticity tensor were combined to give axial and transverse Young's, shear and bulk moduli of the fibres. These were 10.2, 8.3, 3.2 and 10.9 GPa, and 6.1, 5.3, 1.9 and 8 GPa for dehydrated type I collagen and elastin, respectively. The former values are close to those previously reported. A microfocused BLS approach was also applied providing selection of single fibres. The moduli of collagen and elastin are much higher than those measured at lower frequency using macroscopic strains, and the difference between them is much less. We therefore believe, like previous investigators, that molecular-scale viscoelastic effects are responsible for the frequency dependence of the fibre biomechanics. Combining BLS with larger-scale mechanical testing methods therefore should, in the future, provide a means of following the evolution of mechanical properties in the formation of the complex structures found in the ECM.
Raman spectra have been determined for hyaluronan, chondroitin-4-sulfate, chondroitin-6-sulfate, aggrecan monomers and aggregates. The nature of the saccharides and the pattern of sulfation can be discerned. There were only small spectral changes with pH and ionic composition. Differences between hydroxyl vibrations, bulk water and solution conditions are shown. The spectrum of aggrecan is dominated by chondroitin sulfate contribution. The sulfation pattern and ratio of protein to glycosaminoglycan and the secondary structure of the core protein were determined.
Stimulated Raman Scattering has been applied to unstained samples of articular cartilage enabling the investigation of living cells within fresh tissue. Hyperspectral SRS measurements over the CH vibrational region showed variations in protein and lipid content within the cells, pericellular matrix and interteritorial matrix. Changes in the cells and pericellular matrix were investigated as a function of depth into the cartilage. Lipid was detected in the pericellular matrix of superficial zone chondrocytes. The spectral profile of lipid droplets within the chondrocytes indicated that they contained predominantly unsaturated lipids. The mineral content has been imaged by using the PO4 3-vibration at 959cm -1 and the CO3 2-vibration at 1070cm -1 . Both changes in cells and mineralization are known to be important factors in the progression of osteoarthritis. SRS enables these to be visualised in fresh unstained tissue and consequently should benefit osteoarthiritis research
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.