The exosome is a conserved multiprotein complex essential for RNA processing and degradation. The nuclear exosome is a key factor for pre-rRNA processing through the activity of its catalytic subunits, Rrp6 and Rrp44. In , Rrp6 is exclusively nuclear and has been shown to interact with exosome cofactors. With the aim of analyzing proteins associated with the nuclear exosome, in this work, we purified the complex with Rrp6-TAP, identified the co-purified proteins by mass spectrometry, and found karyopherins to be one of the major groups of proteins enriched in the samples. By investigating the biological importance of these protein interactions, we identified Srp1, Kap95, and Sxm1 as the most important karyopherins for Rrp6 nuclear import and the nuclear localization signals recognized by them. Based on the results shown here, we propose a model of multiple pathways for the transport of Rrp6 to the nucleus.
The RNA exosome is a multi-subunit protein complex involved in RNA surveillance of all classes of RNA, and is essential for pre-ribosomal RNA processing. The exosome is conserved throughout evolution, present in archaea and eukaryotes from yeast to humans, where it localizes to the nucleus and cytoplasm. The catalytically active subunit Rrp44/Dis3 of the exosome in budding yeast (Saccharomyces cerevisiae) is considered a protein present in these two subcellular compartments, and here we report that not only it localizes mainly to the nucleus, but is concentrated in the nucleolus, where the early pre-rRNA processing reactions take place. Moreover, we show by confocal microscopy analysis that the core exosome subunits Rrp41 and Rrp43 also localize largely to the nucleus and strongly accumulate in the nucleolus. These results shown here shed additional light on the localization of the yeast exosome and have implications regarding the main function of this RNase complex, which seems to be primarily in early pre-rRNA processing and surveillance.
Nuclear RNA binding proteins (RBPs) are difficult to study because they often belong to large protein families and form extensive networks of auto- and cross-regulation. They are highly abundant and often localize to condensates with a slow turnover, requiring long depletion times or knockouts that cannot distinguish between direct and indirect or compensatory effects. Here, we developed a system that is optimized for the rapid degradation of nuclear RBPs, called hGRAD. It comes as a 'one-fits-all' plasmid, and integration into any cell line that expresses endogenously GFP-tagged proteins allows an inducible, rapid and complete knockdown. We show that the nuclear RBPs SRSF3, SRSF5, SRRM2 and NONO are completely cleared from nuclear speckles and paraspeckles within two hours. hGRAD works in various cell types, is more efficient than other methods and does not require the expression of exogenous ubiquitin ligases. Combining SRSF5 hGRAD degradation with Nascent-seq uncovered highly dynamic transient transcript changes, compensatory mechanisms and that SRSF5 promotes transcript stability.
Oliveira, por me proporcionar trabalhar em um projeto desafiador. Além da oportunidade, agradeço pela orientação, paciência, incentivo e disponibilidade.Agradeço ao Prof. Dr. Fernando Alexis Gonzales Zubiate pela paciência, orientação e pelos inúmeros cafés.Thanks to Prof. Dr. Olivier Gadal, for accepting me in his lab, for guiding me, being patient, for telling me a lot of histories about France and for all the wine and cheese.Agradeço a todos os membros e ex-membros do laboratório da Profa. Dra. Carla, por toda a ajuda durante meu mestrado e por todas as risadas. Obrigada Fiorella, Paola,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.