Ganglion cells that had complex receptive field properties, namely, On-Off and On direction-selective cells, orientation-selective cells, local edge detectors, and uniformity detectors (suppressed by contrast cells) were recorded in an isolated superfused rabbit eyecup preparation. Cells were first classified by their characteristic extracellular responses to manually controlled stimuli similar to those which have been used in previous in vivo studies. Ganglion cells were then impaled, confirmed in identity by intracellular recording, and iontophoretically injected with horseradish peroxidase for staining. Twenty-two ganglion cells, which included members of all the major classes mentioned above, were recovered from the visual streak or near periphery. All recovered cells were drawn in camera lucida from flat-mounted retinas and entered into a computer as two-dimensional stick figures; nearly all were three-dimensionally reconstructed to determine the level and manner of dendritic ramification in the inner plexiform layer (IPL). The location of ganglion cell dendrites in sublaminar regions of the IPL was found to be consistent with the hypothesis of a division of the IPL into excitatory On (proximal) and Off (distal) sublaminae, with some qualifications for particular classes. Each of the complex receptive field ganglion cell classes exhibited a distinctive three-dimensional dendritic arborization pattern uniquely associated with that physiological class.
Detection of the gap in a four-position Landolt C presented to one eye is impaired by critically spaced surrounding bars seen only by the other eye. The intensity and spatial extent of this contralateral contour interaction match those obtained ipsilaterally. These results indicate that the neural site for this loss of visual information is supraretinal.
Rabbit retinal ganglion cells with concentric receptive fields were intracellularly recorded and stained in the isolated superfused eyecup preparation to relate specific physiological response properties to dendritic morphology. Concentric ganglion cells, as traditionally defined, were those that had On or Off centers with antagonistic surrounds but lacked complex response properties such as direction or orientation selectivity. Concentric cells were classified into different groups by extracellular recordings of their On- or Off-center response sign, excitatory receptive field center size, linearity of spatial summation, and brisk vs. sluggish and transient vs. sustained responses to step changes in light intensity. The cells were then impaled, confirmed in identity during intracellular recording, and iontophoretically injected with horseradish peroxidase for histological analysis. Twenty-three concentric ganglion cells were recovered and morphometrically analyzed. Their physiological response properties were found to be related to a number of underlying two- and three-dimensional attributes of the cell's dendritic branching patterns. The dendrites of all 20 brisk concentric cells and two of the three sluggish cells were found to ramify narrowly in either the proximal or distal half of the inner plexiform layer, corresponding to whether they are On center or Off center, respectively. One of the sluggish concentric cells was found to have a more complex, partially bistratified ramification. Physiologically identified brisk-sustained-linear, brisk-transient-nonlinear, brisk-transient-linear, and at least two classes of sluggish concentric ganglion cells were stained. Each of these physiological classes appears to exhibit a distinct and identifiable dendritic branching pattern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.