Melanin is a complex multifunctional pigment found in all kingdoms of life, including fungi. The complex chemical structure of fungal melanins, yet to be fully elucidated, lends them multiple unique functions ranging from radioprotection and antioxidant activity to heavy metal chelation and organic compound absorption. Given their many biological functions, fungal melanins present many possibilities as natural compounds that could be exploited for human use. This review summarizes the current discourse and attempts to apply fungal melanin to enhance human health, remove pollutants from ecosystems, and streamline industrial processes. While the potential applications of fungal melanins are often discussed in the scientific community, they are successfully executed less often. Some of the challenges in the applications of fungal melanin to technology include the knowledge gap about their detailed structure, difficulties in isolating melanotic fungi, challenges in extracting melanin from isolated species, and the pathogenicity concerns that accompany working with live melanotic fungi. With proper acknowledgment of these challenges, fungal melanin holds great potential for societal benefit in the coming years.
Fungi play essential roles in global ecology and economy, but their thermal biology is widely unknown. Infrared imaging revealed that mushrooms, yeasts, and molds each maintained colder temperatures than their surroundings. Fungal specimens are to be ~2.5 °C colder than the surrounding temperature. Time-lapse infrared images of Pleurotus ostreatus revealed hypothermia throughout mushroom growth and after detachment from mycelium. The hymenium was coldest, and different areas of the mushroom exhibit distinct thermal changes during heating and cooling. The fruiting area in the mycelium remained relatively cold following mushroom detachment. Analyses of Agaricus bisporus mushroom pilei confirmed that the mechanism for mushroom hypothermia depends on evaporative cooling. We also assessed evaporative cooling in biofilms of Cryptococcus neoformans, and Penicillium spp. molds based on the accumulation of condensed water droplets on the lids over biofilms grown on agar media plates. Biofilms of C. neoformans acapsular mutant showed more transpiration and were colder than wildtype. Penicillium biofilms appear to transpire ten times more than the supporting agar. We used the evaporative cooling capacity of mushrooms to construct a mushroom-based air-cooling system (MycoCooler™) capable of passively reducing the temperature of a closed compartment by approximately 10 °C in 25 minutes. This study suggests that hypothermia is a characteristic of the fungal kingdom. Since fungi make up ~2% of Earth biomass, their ability to dissipate heat may contribute significantly to planetary temperatures in local environments. These findings are relevant to the current global warming crisis and suggest that large-scale myco-cultures could help mitigate increasing planetary temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.