We teach a real robot to grasp real fish, by training a virtual robot exclusively in virtual reality. Our approach implements robot imitation learning from a human supervisor in virtual reality. A deep 3D convolutional neural network computes grasps from a 3D occupancy grid obtained from depth imaging at multiple viewpoints. In virtual reality, a human supervisor can easily and intuitively demonstrate examples of how to grasp an object, such as a fish. From a few dozen of these demonstrations, we use domain randomization to generate a large synthetic training data set consisting of 100 000 example grasps of fish. Using this data set for training purposes, the network is able to guide a real robot and gripper to grasp real fish with good success rates. The newly proposed domain randomization approach constitutes the first step in how to efficiently perform robot imitation learning from a human supervisor in virtual reality in a way that transfers well to the real world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.