Programmed cell death-1 (PD-1) is an essential inhibitory receptor in T cells. Antibodies targeting PD-1 elicit durable clinical responses in patients with multiple tumor indications. Nevertheless, a significant proportion of patients do not respond to anti-PD-1 treatment, and a better understanding of the signaling pathways downstream of PD-1 could provide biomarkers for those whose tumors respond and new therapeutic approaches for those whose tumors do not. We used affinity purification mass spectrometry to uncover multiple proteins associated with PD-1. Among these proteins, signaling lymphocytic activation molecule-associated protein (SAP) was functionally and mechanistically analyzed for its contribution to PD-1 inhibitory responses. Silencing of SAP augmented and overexpression blocked PD-1 function. T cells from patients with X-linked lymphoproliferative disease (XLP), who lack functional SAP, were hyperresponsive to PD-1 signaling, confirming its inhibitory role downstream of PD-1. Strikingly, signaling downstream of PD-1 in purified T cell subsets did not correlate with PD-1 surface expression but was inversely correlated with intracellular SAP levels. Mechanistically, SAP opposed PD-1 function by acting as a molecular shield of key tyrosine residues that are targets for the tyrosine phosphatase SHP2, which mediates PD-1 inhibitory properties. Our results identify SAP as an inhibitor of PD-1 function and SHP2 as a potential therapeutic target in patients with XLP.
Programmed cell death protein 1 (PD-1) is an inhibitory receptor on T lymphocytes that is critical for modulating adaptive immunity. As such, it has been successfully exploited for cancer immunotherapy. Programmed death ligand 1 (PD-L1) and PD-L2 are ligands for PD-1; the former is ubiquitously expressed in inflamed tissues, whereas the latter is restricted to antigen-presenting cells. PD-L2 binds to PD-1 with 3-fold stronger affinity compared with PD-L1. To date, this affinity discrepancy has been attributed to a tryptophan (W110PD-L2) that is unique to PD-L2 and has been assumed to fit snuggly into a pocket on the PD-1 surface. Contrary to this model, using surface plasmon resonance to monitor real-time binding of recombinantly-expressed and -purified proteins, we found that W110PD-L2 acts as an “elbow” that helps shorten PD-L2 engagement with PD-1 and therefore lower affinity. Furthermore, we identified a “latch” between the C and D β-strands of the binding face as the source of the PD-L2 affinity advantage. We show that the 3-fold affinity advantage of PD-L2 is the consequence of these two opposing features, the W110PD-L2 “elbow” and a C–D region “latch.” Interestingly, using phylogenetic analysis, we found that these features evolved simultaneously upon the emergence of placental mammals, suggesting that PD-L2–affinity tuning was part of the alterations to the adaptive immune system required for placental gestation.
Aberrant expression of specific microRNAs that can functionally impact progression of primary melanoma occurs as an early event of melanomagenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.