Recent developments in ignition, boosting, and control systems have opened up new opportunities for highly dilute, high-pressure combustion regimes for gasoline engines. This study analytically explores the fundamental thermodynamics of operation in these regimes under realistic burn duration, heat loss, boosting, and friction constraints. The intent is to identify the benefits of this approach and the path to achieving optimum engine and vehicle-level fuel economy. A simple engine/turbocharger model in GT-Power is used to perform a parametric study exploring the conditions for best engine efficiency. These conditions are found in the mid-dilution range, a result of the tradeoff between fluid property benefits of lean mixtures and friction benefits of higher loads. Dilution with exhaust gas is nearly as effective as air dilution when compared using a 'fuel-to-charge' equivalence ratio defined as F 0 [ F (1-RGF) where RGF is the total residual gas fraction. Optimal brake efficiencies are obtained over a range 0.45 4 F 0 4 0.65 for operation up to 3 bar manifold pressure, yielding peak temperatures under 2100 K and peak pressures under 150 bar. These conditions are intermediate between homogeneous charge compression ignition and spark-ignition regimes, and are the subject of much current research on advanced combustion modes. An engine-vehicle drive train simulation shows that accessing this thermodynamic sweet spot has the potential for vehicle fuel economy gains between 23% and 58%.
Advanced combustion strategies for gasoline engines employing highly dilute and low-temperature combustion modes, such as homogeneous charge compression ignition and spark-assisted compression ignition, promise significant improvements in efficiency and emissions. This article presents a novel, reduced-order, physics-based model to capture advanced multi-mode combustion involving spark ignition, homogeneous charge compression ignition and spark-assisted compression ignition operating strategies. The purpose of such a model, which until now was unavailable, was to enhance existing capabilities of engine system simulations and facilitate large-scale parametric studies related to these advanced combustion modes. The model assumes two distinct thermodynamic zones divided by an infinitely thin flame interface, where turbulent flame propagation is captured using a new zero-dimensional formulation of the coherent flame model, and end-gas auto-ignition is simulated using a hybrid approach employing chemical kinetics and a semi-empirical burn rate model. The integrated model was calibrated using three distinct experimental data sets for spark ignition, homogeneous charge compression ignition and spark-assisted compression ignition combustion. The results demonstrated overall good trend-wise agreement with the experimental data, including the ability to replicate heat release characteristics related to flame propagation and auto-ignition during spark-assisted compression ignition combustion. The calibrated model was assessed using a large parametric study, where the predicted homogeneous charge compression ignition and spark-assisted compression ignition operating regions at naturally aspirated conditions were representative of those determined during engine testing. Practical advanced combustion strategies were assessed relative to idealized engine simulations, which showed that efficiency improvements up to 30% compared with conventional spark-ignition operation are possible. The study revealed that poor combustion efficiency and pumping work are the primary mechanisms for efficiency losses for the advanced combustion strategies evaluated.
Increased residual levels in Homogeneous Charge Compression Ignition (HCCI) engines employing valve strategies such as recompression or negative valve overlap (NVO) imply that accurate estimation of residual gas fraction (RGF) is critical for cylinder pressure heat release analysis. The objective of the present work was to evaluate three residual estimation methods and assess their suitability under naturally aspirated and boosted HCCI operating conditions: i) the Simple State Equation method employs the Ideal Gas Law at exhaust valve closing (EVC); ii) the Mirsky method assumes isentropic exhaust process; and iii) the Fitzgerald method models in-cylinder temperature from exhaust valve opening (EVO) to EVC by accounting for heat loss during the exhaust process and uses measured exhaust temperature for calibration. Simulations with a calibrated and validated “virtual engine” were performed for representative HCCI operating conditions of engine speed, fuel-air equivalence ratio, NVO and intake pressure (boosting). The State Equation method always overestimated RGF by more than 10%. The Mirsky method was most robust, with average errors between 3–5%. The Fitzgerald method performed consistently better, ranging from no error to 5%, where increased boosting caused the largest discrepancies. A sensitivity study was also performed and determined that the Mirsky method was most robust to possible pressure and temperature measurement errors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.