One of the latest topics in the world of education is the presentation of policies regarding the replacement of the National Examination (UN) into a Minimum Competency Assessment (AKM) and a character survey by the Minister of Education and Culture. With the new policy, all schools and school residents must make preparations as early as possible. Because this policy has never been implemented before, most educators (teachers) do not have sufficient insight into AKM. Therefore, it is necessary to conduct research on teacher competence in understanding and designing AKM-based questions. Teachers will be given a workshop that aims to provide insight and competence for teachers to prepare for the implementation of AKM in the future with the target of mathematics and science teachers at the state high school level in Babat District (SMAN 1 Babat and MAN 2 Lamongan). Workshops and mentoring for teachers are provided to prepare themselves as pioneers in the implementation of AKM who have the ability to understand and design numeracy category questions. The teachers were given pre-test and post-test during the workshop and the results would be compared and analyzed descriptively with a quantitative approach. The results of the study stated that by giving the workshop, there was an increase in the ability of teachers to understand AKM-based questions by 24.19 points. However, in the ability to design AKM questions, there was only an increase of 5.95 points. Therefore, it is necessary to carry out further post-workshop mentoring.
Hypertension has become a serious health problem in Indonesia because of its prevalence, however, the causative factors could not be ascertained for about ninety percent of the patients. Various studies have found several risk factors causing hypertension to be obesity, family history, stress levels, heart rate, and an unhealthy lifestyle. In this case, the variables are considered influential on hypertension through a regression curve without a specific pattern. Also, we need to describe the functional relationships between several predictor variables with binary or dichotomous response variables and need to describe locally effect of predictor variables to the response variable. Therefore, in this study, to model the case of hypertension by age, body mass index, heart rate, stress levels we use the additive nonparametric logistic regression approach based on local linear estimators. The results of the study showed that hypertension was most prevalent among respondents over 65 years of age with BMI between 25-30 kg/m2 (obesity) and normal heart rate (60-100) bpm and most of them were found to be experiencing mild stress conditions. The model obtained a classification accuracy of 95 percent (in-sample) and 89.47 percent (out-sample) with a cut off probability value of 0.4.
Infectious disease caused by infection of Mycobacterium tuberculosis is called tuberculosis (TB). A common method in detecting TB is by identifying number of mycobacterium TB in sputum manually. Unfortunately, manually calculation by pathologists take a relatively long time. Previous researches on TB bacteria were still limited to detect the absence or presence of mycobacterium TB in images of sputum. This research aims are identifying number of mycobacterium TB and determining accuracy of classification TB severity by approaching nonparametric Poisson regression model and applying an estimator namely local linear. Steps include processing of image, reducing of dimension by applying partial least square and discrete wavelet transformation, and then identifying the number of mycobacterium TB by using the proposed model approach. In this research, we get deviance values of 28.410 for nonparametric and 93.029 for parametric approaches and the average of classification accuracy values for 4 iterations of 92.75% for nonparametric and 85.5% for parametric approaches. Thus, for identifying many of mycobacterium TB met in images of sputum and classifying of TB severity, the proposed identifying method gives higher accuracy and shorter time in identifying number of mycobacterium TB than parametric linear regression method.
This paper introduces a technique that can efficiently identify symptoms and risk factors for early childhood diseases by using feature reduction, which was developed based on Principal Component Analysis (PCA) method. Previous research using Apriori algorithm for association rule mining only managed to get the frequent item sets, so it could only find the frequent association rules. Other studies used ARIMA algorithm and succeeded in obtaining the rare item sets and the rare association rules. The approach proposed in this study was to obtain all the complete sets including the frequent item sets and rare item sets with feature reduction. A series of experiments with several parameter values were extrapolated to analyze and compare the computing performance and rules produced by Apriori algorithm, ARIMA, and the proposed approach. The experimental results show that the proposed approach could yield more complete rules and better computing performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.