Platelets from 200 random Dutch blood donors were typed for the human platelet alloantigens HPA-1 to -5 recognized at present and for Naka. Naka is an epitope on glycoprotein IV, not expressed on the platelet of individuals with hereditary GP IV deficiency. Platelet immunofluorescence and monoclonal antibody-specific immobilization of platelet antigens (MAIPA) were applied for this purpose. The observed phenotype frequencies were 97.86% and 28.64% for HPA-1a and -1b, 100% and 13.15% for HPA-2a and -2b, 80.95% and 69.84% for HPA-3a and -3b, 100% and 0% for HPA-4a and -4b, 100% and 19.7% for HPA-5a and HPA-5b, respectively. Platelets from all donors reacted with the anti-Naka antibodies. To determine the gene frequencies for the HPA-1, HPA-2 and HPA-3 systems directly, DNA from 98 of these donors was isolated from peripheral blood mononuclear leucocytes and specific fragments were amplified by polymerase chain reaction (PCR). The fragments were analyzed using allele-specific restriction enzymes (ASRA). In all amplified PCR products an “internal control” for each assay, ie, a restriction site for the applied enzyme independent from the phenotype of the donor was present. In all donors tested, phenotypes, as determined by serological methods and genotypes, directly determined by the ASRA, were identical. Thus, the PCR-ASRA described in this report is a practical and reliable technique for the determination of alleles that code for platelet antigen allotypes, at least in the Dutch population.
SummaryIt has been reported that blood trombopoietin (TPO) levels can discriminate between thrombocytopenia due to increased platelet destruction and decreased platelet production. With our TPO ELISA and a glycocalicin ELISA we analysed a large group of patients in detail and could confirm and amplify the above notion in detail.TPO levels were determined in plasma from 178 clinically and serologically well-defined thrombocytopenic patients: 72 patients with idiopathic autoimmune thrombocytopenia (AITP), 29 patients with secondary AITP, 5 patients with amegakaryocytic thrombocytopenia and 72 patients who suffered from various diseases (46 in whom megakaryocyte deficiency was not and 26 in whom it was expected). In addition, we measured the level of glycocalicin as a marker of total body mass of platelets.In all patients with primary AITP and secondary AITP, TPO levels were within the normal range or in some (n = 7) cases only slightly increased. The level of glycocalicin was not significantly different from that of the controls (n = 95). The patients with amegakaryocytic thrombocytopenia had strongly elevated TPO levels and significantly decreased glycocalicin levels. Similarly, among the 72 thrombocytopenic patients with various disorders, elevated TPO levels were only found in patients in whom platelet production was depressed. The mean level of glycocalicin in these patients was decreased compared to that in controls and patients with AITP, but was not as low as in patients with amegakaryocytic thrombocytopenia.In conclusion, all patients with depressed platelet production had elevated levels of circulating TPO, whereas the TPO levels in patients with an immune-mediated thrombocytopenia were mostly within the normal range. Therefore, measurement of plasma TPO levels provides valuable diagnostic information for the analysis of thrombocytopenia in general.Moreover, treatment with TPO may be an option in AITP.
Immune Thrombocytopenia (ITP) is diagnosed by exclusion of other causes for thrombocytopenia. Reliable detection of platelet autoantibodies would support the clinical diagnosis of ITP and prevent misdiagnosis. We optimized our diagnostic algorithm for suspected ITP using the direct monoclonal antibody immobilization of platelet antigens assay (MAIPA), which evaluates the presence of platelet autoantibodies on the glycoproteins (GP) IIb/IIIa, Ib/IX and V bound on the patient platelets. The direct MAIPA was shown to be a valuable technique for the detection of platelet autoantibodies and could possibly become a guide for optimizing therapy towards a more personalized treatment of ITP.
More than half (21) of the 35 cases of FNAIN presented with infections and most implicated were HNA-1a, HNA-1b and HNA-2. Treatment with antibiotics seemed adequate. A neonatal neutropenia workflow model for use in neonatal intensive care units is presented.
We have identified a new platelet-specific alloantigen, Max(a), responsible for a typical case of neonatal alloimmune thrombocytopenic purpura. The maternal serum reacted strongly with paternal platelets in the platelet immunofluorescence test, whereas platelet alloantigen typing showed that no known human platelet antigen (HPA)-system was involved. In the monoclonal antibody (MoAb)-specific immobilization of platelet antigens (MAIPA) assay, the new antigen was located on the platelet membrane glycoprotein (GP) IIb-IIIa complex, but immunoprecipitation and immunoblot experiments to further localize the antigen failed. However, in the MAIPA assay, the binding of the anti- Max(a) antibodies from the maternal serum was blocked by two anti-GPIIb MoAbs. Thus, the antigen appeared to be located on GPIIb. Analysis of the family lead to the identification of six additional Max(a+) individuals. Three of these six individuals and the father were tested in the platelet aggregation test and were found to be normal. In the analysis of normal donors, three of 500 were typed positive for the new platelet-specific antigen, indicating a phenotype frequency of 0.6% in the normal population. Platelet RNA was isolated from the newborn's Max(a)+ father and from a healthy donor phenotyped as Max(a-), reverse- transcribed, and the entire GPIIb coding region was amplified by polymerase chain reaction. Subsequent nucleotide sequence analysis showed a single G-->A substitution at position 2,603, predicting a valine-->methionine amino acid substitution at position 837 of the mature glycoprotein. This mutation abolished a BsiYI restriction site at the cDNA level and a BstNI restriction site at genomic DNA level, respectively. The genetic association between the new antigen and this point mutation was confirmed by allele-specific restriction analysis on cDNA and on genomic DNA, as well as by allele-specific primer amplification on genomic DNA. The new mutation is 19 bp upstream of the mutation underlying the HPA-3 system. Therefore, we also evaluated the association between Mas and the HPA-3 polymorphism. So far, all Max(a+) individuals were also found to be HPA-3b, whereas 50 HPA-3a individuals were all Max(a-). This may indicate that Max(a) is a variant of the HPA- 3 allele.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.