The methylation of CpG islands is associated with transcriptional repression and, in cancer, leads to the abnormal silencing of tumor suppressor genes. Because aberrant hypermethylation may be used as a marker for disease, a sensitive method for the global detection of DNA methylation events is of particular importance. We describe a novel and robust technique, called methyl-CpG immunoprecipitation, which allows the unbiased genome-wide profiling of CpG methylation in limited DNA samples. The approach is based on a recombinant, antibody-like protein that efficiently binds native CpG-methylated DNA. In combination with CpG island microarrays, the technique was used to identify >100 genes with aberrantly methylated CpG islands in three myeloid leukemia cell lines. Interestingly, within all hypermethylation targets, genes involved in transcriptional regulation were significantly overrepresented. More than half of the identified genes were absent in microarray expression studies in either leukemia or normal monocytes, indicating that hypermethylation in cancer may be largely independent of the transcriptional status of the affected gene. Most individually tested genes were also hypermethylated in primary blast cells from acute myeloid leukemia patients, suggesting that our approach can identify novel potential disease markers. The technique may prove useful for genome-wide comparative methylation analysis not only in malignancies. (Cancer Res 2006; 66(12): 6118-28)
Aberrant DNA methylation at CpG islands is thought to contribute to cancer initiation and progression, but mechanisms that establish and maintain DNA methylation status during tumorigenesis or normal development remain poorly understood. In this study, we used methyl-CpG immunoprecipitation to generate comparative DNA methylation profiles of healthy and malignant cells (acute leukemia and colorectal carcinoma) for human CpG islands across the genome. While searching for sequence patterns that characterize DNA methylation states, we discovered several nonredundant sequences in CpG islands that were resistant to aberrant de novo methylation in cancer and that resembled consensus binding sites for general transcription factors (TF). Comparing methylation profiles with global CpG island binding data for specific protein 1, nuclear respiratory factor 1, and yin-yang 1 revealed that their DNA binding activity in normal blood cells correlated strictly with an absence of de novo methylation in cancer. In addition, global evidence showed that binding of any of these TFs to their consensus motif depended on their co-occurrence with neighboring consensus motifs. In summary, our results had two major implications. First, they pointed to a major role for cooperative binding of TFs in maintaining the unmethylated status of CpG islands in health and disease. Second, our results suggest that the majority of de novo methylated CpG islands are characterized by the lack of sequence motif combinations and the absence of activating TF binding.
Understanding cell-type-specific epigenetic codes on a global level is a major challenge after the sequencing of the human genome has been completed. Here we applied methyl-CpG immunoprecipitation (MCIp) to obtain comparative methylation profiles of coding and noncoding genes in three human tissues, testis, brain, and monocytes. Forty-four mainly testis-specific promoters were independently validated using bisulfite sequencing or single-gene MCIp, confirming the results obtained by the MCIp microarray approach. We demonstrate the previously unknown somatic hypermethylation at many CpG-rich, testis-specific gene promoters, in particular in ampliconic areas of the Y chromosome. We also identify a number of miRNA genes showing tissue-specific methylation patterns. The comparison of the obtained tissue methylation profiles with corresponding gene expression data indicates a significant association between tissue-specific promoter methylation and gene expression, not only in CpG-rich promoters. In summary, our study highlights the exceptional epigenetic status of germ-line cells in testis and provides a global insight into tissue-specific DNA methylation patterns.
Monozygotic (MZ) twins are considered being genetically identical, therefore they cannot be differentiated using standard forensic DNA testing. Here we describe how identification of extremely rare mutations by ultra-deep next generation sequencing can solve such cases. We sequenced DNA from sperm samples of two twins and from a blood sample of the child of one twin. Bioinformatics analysis revealed five single nucleotide polymorphisms (SNPs) present in the twin father and the child, but not in the twin uncle. The SNPs were confirmed by classical Sanger sequencing. Our results give experimental evidence for the hypothesis that rare mutations will occur early after the human blastocyst has split into two, the origin of twins, and that such mutations will be carried on into somatic tissue and the germline. The method provides a solution to solve paternity and forensic cases involving monozygotic twins as alleged fathers or originators of DNA traces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.