Monitoring a user's mobility during daily life is an essential requirement in providing advanced mobile services. While extensive attempts have been made to monitor user mobility, previous work has rarely addressed issues with battery lifetime in real deployment. In this paper, we introduce SmartDC, a mobility prediction-based adaptive duty cycling scheme to provide contextual information about a user's mobility: time-resolved places and paths. Unlike previous approaches that focused on minimizing energy consumption for tracking raw coordinates, we propose efficient techniques to maximize the accuracy of monitoring meaningful places with a given energy constraint. SmartDC comprises unsupervised mobility learner, mobility predictor, and Markov decision process-based adaptive duty cycling. SmartDC estimates the regularity of individual mobility and predicts residence time at places to determine efficient sensing schedules. Our experiment results show that SmartDC consumes 81% less energy than the periodic sensing schemes, and 87% less energy than a scheme employing context-aware sensing, yet it still correctly monitors 80% of a user's location changes within a 160-second delay.
Abstract. In mobile ad hoc networks, mobile devices wander autonomously for the use of wireless links and dynamically varying network topology. AODV (Ad-hoc on-demand Distance vector routing) is a representative among the most widely studied on-demand ad hoc routing protocols. Previous protocols have shown some shortcomings on performance. AODV and most of the ondemand ad hoc routing protocols use single route reply along reverse path. Rapid change of topology causes that the route reply could not arrive to the source node, i.e. after a source node sends several route request messages, the node obtains a reply message, especially on high speed mobility. This increases both in communication delay and power consumption as well as decrease in packet delivery ratio. To avoid these problems, we propose a reverse AODV which tries multiple route replies. The extended AODV is called reverse AODV (R-AODV), which has a novel aspect compared to other on-demand routing protocols on Ad-hoc Networks: it reduces path fail correction messages and obtains better performance than the AODV and other protocols have. We design the R-AODV protocol and implement simulation models using NS-2. Simulation results show that the reverse AODV provides good experimental results on packet delivery ratio, power consumption and communication delay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.