Monitoring a user's mobility during daily life is an essential requirement in providing advanced mobile services. While extensive attempts have been made to monitor user mobility, previous work has rarely addressed issues with battery lifetime in real deployment. In this paper, we introduce SmartDC, a mobility prediction-based adaptive duty cycling scheme to provide contextual information about a user's mobility: time-resolved places and paths. Unlike previous approaches that focused on minimizing energy consumption for tracking raw coordinates, we propose efficient techniques to maximize the accuracy of monitoring meaningful places with a given energy constraint. SmartDC comprises unsupervised mobility learner, mobility predictor, and Markov decision process-based adaptive duty cycling. SmartDC estimates the regularity of individual mobility and predicts residence time at places to determine efficient sensing schedules. Our experiment results show that SmartDC consumes 81% less energy than the periodic sensing schemes, and 87% less energy than a scheme employing context-aware sensing, yet it still correctly monitors 80% of a user's location changes within a 160-second delay.
Crowd-enabled place-centric systems gather and reason over large mobile sensor datasets and target everyday user locations (such as stores, workplaces, and restaurants). Such systems are transforming various consumer services (for example, local search) and data-driven organizations (city planning). As the demand for these systems increases, our understanding of how to design and deploy successful crowdsensing systems must improve. In this paper, we present a systematic study of the coverage and scaling properties of placecentric crowdsensing. During a two-month deployment, we collected smartphone sensor data from 85 participants using a representative crowdsensing system that captures ≈ 48,000 different place visits. Our analysis of this dataset examines issues of core interest to place-centric crowdsensing, including place-temporal coverage, the relationship between the user population and coverage, privacy concerns, and the characterization of the collected data. Collectively, our findings provide valuable insights to guide the building of future placecentric crowdsensing systems and applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.