In neurodegeneration research, normalization of regional volumes by intracranial volume (ICV) is important to estimate the extent of disease-driven atrophy. There is little agreement as to whether raw volumes, volume-to-ICV fractions or regional volumes from which the ICV factor has been regressed out should be used for volumetric brain imaging studies. Using multiple regional cortical and subcortical volumetric measures generated by Freesurfer (51 in total), the main aim of this study was to elucidate the implications of these adjustment approaches. Magnetic resonance imaging (MRI) data were analyzed from two large cohorts, the population-based PIVUS cohort (N = 406, all subjects age 75) and the Alzheimer disease Neuroimaging Initiative (ADNI) cohort (N = 724). Further, we studied whether the chosen ICV normalization approach influenced the relationship between hippocampus and cognition in the three diagnostic groups of the ADNI cohort (Alzheimer's disease, mild cognitive impairment, and healthy individuals). The ability of raw vs. adjusted hippocampal volumes to predict diagnostic status was also assessed. In both cohorts raw volumes correlate positively with ICV, but do not scale directly proportionally with it. The correlation direction is reversed for all volume-to-ICV fractions, except the lateral and third ventricles. Most gray matter fractions are larger in females, while lateral ventricle fractions are greater in males. Residual correction effectively eliminated the correlation between the regional volumes and ICV and removed gender differences. The association between hippocampal volumes and cognition was not altered by ICV normalization. Comparing prediction of diagnostic status using the different approaches, small but significant differences were found. The choice of normalization approach should be carefully considered when designing a volumetric brain imaging study.
Background Atrophy in the medial temporal lobe, frontal lobe and posterior cortex can be measured with visual rating scales such as the medial temporal atrophy (MTA), global cortical atrophy – frontal subscale (GCA‐F) and posterior atrophy (PA) scales, respectively. However, practical cut‐offs are urgently needed, especially now that different presentations of Alzheimer's disease (AD) are included in the revised diagnostic criteria. Aims The aim of this study was to generate a list of practical cut‐offs for the MTA, GCA‐F and PA scales, for both diagnosis of AD and determining prognosis in mild cognitive impairment (MCI), and to evaluate the influence of key demographic and clinical factors on these cut‐offs. Methods AddNeuroMed and ADNI cohorts were combined giving a total of 1147 participants (322 patients with AD, 480 patients with MCI and 345 control subjects). The MTA, GCA‐F and PA scales were applied and a broad range of cut‐offs was evaluated. Results The MTA scale showed better diagnostic and predictive performances than the GCA‐F and PA scales. Age, apolipoprotein E (ApoE) ε4 status and age at disease onset influenced all three scales. For the age ranges 45–64, 65–74, 75–84 and 85–94 years, the following cut‐offs should be used. MTA: ≥1.5, ≥1.5, ≥2 and ≥2.5; GCA‐F, ≥1, ≥1, ≥1 and ≥1; and PA, ≥1, ≥1, ≥1 and ≥1, respectively, with an adjustment for early‐onset ApoE ε4 noncarrier AD patients (MTA: ≥2, ≥2, ≥3 and ≥3; and GCA‐F: ≥1, ≥1, ≥2 and ≥2, respectively). Conclusions If successfully validated in clinical settings, the list of practical cut‐offs proposed here might be useful in clinical practice. Their use might also (i) promote research on atrophy subtypes, (ii) increase the understanding of different presentations of AD, (iii) improve diagnosis and prognosis and (iv) aid population selection and enrichment for clinical trials.
Cerebral microbleeds (CMBs), also referred to as microhemorrhages, appear on magnetic resonance (MR) images as hypointense foci notably at T2*-weighted or susceptibility-weighted (SW) imaging. CMBs are detected with increasing frequency because of the more widespread use of high magnetic field strength and of newer dedicated MR imaging techniques such as three-dimensional gradient-echo T2*-weighted and SW imaging. The imaging appearance of CMBs is mainly because of changes in local magnetic susceptibility and reflects the pathologic iron accumulation, most often in perivascular macrophages, because of vasculopathy. CMBs are depicted with a true-positive rate of 48%-89% at 1.5 T or 3.0 T and T2*-weighted or SW imaging across a wide range of diseases. False-positive "mimics" of CMBs occur at a rate of 11%-24% and include microdissections, microaneurysms, and microcalcifications; the latter can be differentiated by using phase images. Compared with postmortem histopathologic analysis, at least half of CMBs are missed with premortem clinical MR imaging. In general, CMB detection rate increases with field strength, with the use of three-dimensional sequences, and with postprocessing methods that use local perturbations of the MR phase to enhance T2* contrast. Because of the more widespread availability of high-field-strength MR imaging systems and growing use of SW imaging, CMBs are increasingly recognized in normal aging, and are even more common in various disorders such as Alzheimer dementia, cerebral amyloid angiopathy, stroke, and trauma. Rare causes include endocarditis, cerebral autosomal dominant arteriopathy with subcortical infarcts, leukoencephalopathy, and radiation therapy. The presence of CMBs in patients with stroke is increasingly recognized as a marker of worse outcome. Finally, guidelines for adjustment of anticoagulant therapy in patients with CMBs are under development. RSNA, 2018.
Object Different neuroimaging biomarkers have been studied to find a tool for prediction of response to CSF shunting in idiopathic normal-pressure hydrocephalus (iNPH). The callosal angle (CA) has been described as useful in discriminating iNPH from ventricular dilation secondary to atrophy. However, the usefulness of the CA as a prognostic tool for the selection of shunt candidates among patients with iNPH is unclear. The aim of this study was to compare the CA in shunt responders with that in nonresponders and clarify whether the CA can serve as a predictor of the outcome. Methods Preoperative MRI brain scans were evaluated in 109 patients who had undergone shunt surgery for iNPH during 2006–2010. Multiplanar reconstruction was performed interactively to obtain a coronal image through the posterior commissure, perpendicular to the anterior-posterior commissure plane. The CA was measured as the angle between the lateral ventricles on the coronal image. The patients were examined clinically before surgery and at 12 months postoperatively. Results Shunt responders had a significantly smaller mean preoperative CA compared with nonresponders: 59° (95% CI 56°–63°) versus 68° (95% CI 61°–75°) (p < 0.05). A CA cutoff value of 63° showed the best prognostic accuracy. Conclusions The preoperative CA is smaller in patients whose condition improves after shunt surgery and may be a useful tool in the selection of shunt candidates among patients with iNPH.
Quantitative measurements of brain perfusion are influenced by perfusion-modifiers. Standardization of measurement conditions and correction for important modifiers is essential to improve accuracy and to facilitate the interpretation of perfusion-derived parameters. An extensive literature search was carried out for factors influencing quantitative measurements of perfusion in the human brain unrelated to medication use. A total of 58 perfusion modifiers were categorized into four groups. Several factors (e.g., caffeine, aging, and blood gases) were found to induce a considerable effect on brain perfusion that was consistent across different studies; for other factors, the modifying effect was found to be debatable, due to contradictory results or lack of evidence. Using the results of this review, we propose a standard operating procedure, based on practices already implemented in several research centers. Also, a theory of ‘deep MRI physiotyping’ is inferred from the combined knowledge of factors influencing brain perfusion as a strategy to reduce variance by taking both personal information and the presence or absence of perfusion modifiers into account. We hypothesize that this will allow to personalize the concept of normality, as well as to reach more rigorous and earlier diagnoses of brain disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.