Ethereum blockchain has shown great potential in providing the next generation of the decentralized platform beyond crypto payments. Recently, it has attracted researchers and industry players to experiment with developing various Web3 applications for the Internet of Things (IoT), Defi, Metaverse and many more. Although Ethereum provides a secure platform for developing decentralized applications, it is not immune to security risks and has been a victim of numerous cyber attacks. Adversarial attacks are a new cyber threat to systems that have been rising. Adversarial attacks can disrupt and exploit decentralized applications running on the Ethereum platform by creating fake accounts and transactions. Detecting adversarial attacks is challenging because the fake materials (e.g., accounts and transactions) as malicious payloads are similar to benign data. This paper proposes a model using Generative Adversarial Networks (GAN) and Deep Recurrent Neural Networks (RNN) for cyber threat hunting in the Ethereum blockchain. Firstly, we employ GAN to generate fake transactions using genuine Ethereum transactions as the first phase of the proposed model. Then in the second phase, we utilize bi-directional Long Short-Term Memory (LSTM) to identify adversarial transactions in a hunting exercise. The results of the first phase evaluation show that the GAN can generate transactions identical to the actual Ethereum transactions with an accuracy of 82.51%. Also, the results of the second phase show 99.98% accuracy in identifying adversarial transactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.