Experimental and epidemiological evidence shows that parasites, particularly helminths, play a central role in balancing the host immunity. It was demonstrated that parasites can modulate immune responses via their excretory/secretory (ES) and some specific proteins. Extracellular vesicles (EVs) are nano-scale particles that are released from eukaryotic and prokaryotic cells. EVs in parasitological studies have been mostly employed for immunotherapy of autoimmune diseases, vaccination, and diagnosis. EVs can carry virulence factors and play a central role in the development of parasites in host cells. These molecules can manipulate the immune responses through transcriptional changes. Moreover, EVs derived from helminths modulate the immune system via provoking anti-inflammatory cytokines. On the other hand, EVs from parasite protozoa can induce efficient immunity, that makes them useful for probable next-generation vaccines. In addition, it seems that EVs from parasites may provide new diagnostic approaches for parasitic infections. In the current study, we reviewed isolation methods, functions, and applications of parasite's EVs in immunotherapy, vaccination, and diagnosis.
Inflammatory bowel disease (IBD) is a multi‐factorial autoimmune disorder that its causative agents are unknown. The gut microbiota comprises of bacteria, viruses, fungi and protozoa that its role in IBD has remained controversially. Bacteria constitute more than 99% of the gut microbiota composition, and the main core of the gut microbiota is composed from Bacteroidetes and Firmicutes. The gut microbiota plays an important role in training, development and haemostasis of the immune responses during the life. Fungi compose a very small portion of gut microbiota, but play determinative roles in homeostasis of the gut bacterial composition and the mucosal immune responses. An interkingdom correlation between bacteria and fungi has been suggested. For example, the presence of Salmonella enterica serovar Typhimurium reduces the viability and colonisation of C albicans. Alterations in the composition and function of the gut microbiota, which is known as dysbiosis, are a usual event in patients who suffer from IBD. Although the main reason for this alteration is not clear, the interaction between gut bacteria and gut fungi seems to be an important subject in IBD patients. This review covers new findings on the interaction between fungi and bacteria and the role of fungi in the pathophysiology of IBD.
Toxoplasma gondii is a zoonotic intracellular protozoan with worldwide distribution. Acute and severe toxoplasmosis are commonly reported in patients who suffer from acquired/congenital immune deficiency. This study aimed to synthesize mannosylated paromomycin-loaded solid lipid nanoparticles (PM-SLN-M) and to evaluate them on acute toxoplasmosis. SLN was synthesized and then loaded by 7 mg/mL paromomycin sodium. Mannose coating was performed, and after washing, the size, zeta potential, and loading percentage were calculated. To evaluate the cell toxicity, an MTT assay was performed on Vero cells by different concentrations (log 10 −1) of SLN, PM-SLN-M, and PM-SLN. In addition, the anti-Toxoplasma effects were also evaluated using trypan-blue staining and scanning electron microscopy (SEM). An MTT assay was also employed to evaluate the effects of PM and PM-SLN-M on intracellular Toxoplasma. A 6-month stability test of PM-SLN and PM-SLN-M represented that the characteristics all remained constant. The cell viability assay demonstrated that PM-SLN-M had lower cell toxicity (<20%) compared to PM-SLN (<30%) and PM (<40%). Statistical analysis showed that PM-SLN-M significantly killed ∼97.555 ± 0.629 (95% CI: 91.901 to 103.209; P < 0.05) of T. gondii tachyzoites. More than 50% of Toxoplasma-infected Vero cells remained viable in concentrations more than 0.07 µg/mL and 7 µg/mL of PM and PM-SLN-M, respectively. SEM analysis showed that T. gondii tachyzoites were changed in both size and morphology facing with PM-SLN-M. Our findings indicated that synthesized PM-SLN-M had anti-Toxoplasma activity without significant host cell toxicity at the highest concentration. Our study demonstrated that PM was able to kill intracellular Toxoplasma in lower concentration in comparison to PM-SLN-M, although PM-SLN-M showed lower cytotoxic effects on Vero cells.
Acinetobacter baumannii (A. baumannii) is an important opportunistic pathogen responsible for nosocomial infections worldwide at recent decades. Biofilm formation by A. baumannii leads to antibiotic resistance and survives on abiotic and biotic surfaces. In the present study we aimed to assess the ability of biofilm formation in clinical and environmental isolates of A. baumannii by phenotypic methods and to detect the presence of genes involving in the biofilm development; bap, ompA, csuE, abaI, and blaPER-1by PCR method. Totally 120 A. baumanniin isolates, 98 clinical, and 22 environmental were evaluated for biofilm formation using the modified Microtiter plate method, Congo red agar methods, and the existence of genes related to biofilm by standard PCR. The phenotypic results showed that the biofilm formation rate was 10.8% isolates that in environmental A. baumannii isolates were higher than clinical isolates. The abaI, csuE, and ompA genes were detected in all isolates with biofilm formation and the bap and blaPER-1genes were positive in 14.2% and 13.3% of A. baumannii isolates, respectively. The sequence of genes were submitted in NCBI. Based on our results, the Congo red agar method was significantly better than the Microtiter plate technique for phenotypic evaluation of biofilm formation in the A. baumannii. Our study indicates that abaI, csuE, and ompA genes were detected in all isolates unlike the bap and blaPER-1genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.