Background Captive animals, compared to their wild counterparts, generally harbor imbalanced gut microbiota owing, in part, to their altered diets. This imbalance is particularly striking for folivores that fundamentally rely on gut microbiota for digestion, yet rarely receive sufficient dietary fiber in captivity. We examine the critically endangered Coquerel’s sifaka (Propithecus coquereli), an anatomically specialized, rather than facultative, folivore that consumes a seasonal frugo-folivorous diet in the wild, but is provisioned predominantly with seasonal foliage and orchard vegetables in captivity. Using amplicon and metagenomic sequencing applied to fecal samples collected from two wild and one captive population (each comprising multiple groups), we clarify how dietary variation underlies the perturbational effect of captivity on the structure and function of this species’ gut microbiota. Results The gut microbiota of wild sifakas varied by study population, most notably in community evenness and in the abundance of diet-associated microbes from Prevotellaeceae and Lachnospiraceae. Nevertheless, the differences among wild subjects were minor compared to those evident between wild and captive sifakas: Unusually, the consortia of captive sifakas were the most diverse, but lacked representation of endemic Bacteroidetes and metagenomic capacity for essential amino-acid biosynthesis. Instead, they were enriched for complex fiber metabolizers from the Firmicutes phylum, for archaeal methanogens, and for several metabolic pathways putatively linked to plant fiber and secondary compound metabolism. Conclusions The relatively minor differences in gut microbial structure and function between wild sifaka populations likely reflect regional and/or temporal environmental variability, whereas the major differences observed in captive conspecifics, including the loss of endemic microbes, but gain in low-abundance taxa, likely reflect imbalanced or unstable consortia. Indeed, community perturbation may not necessarily entail decreased community diversity. Moreover, signatures of greater fiber degradation indicate that captive sifakas consume a more fibrous diet compared to their wild counterparts. These results do not mirror those typically reported for folivores and herbivores, suggesting that the direction and strength of captivity-induced ‘dysbiosis’ may not be universal across species with similar feeding strategies. We propose that tailored, species-specific dietary interventions in captivity, aimed at better approximating naturally foraged diets, could functionally ‘rewild’ gut microbiota and facilitate successful management of diverse species.
Folivory evolved independently at least three times over the last 40 million years among Madagascar's lemurs. Many extant lemuriform folivores exist in sympatry in Madagascar's remaining forests. These species avoid feeding competition by adopting different dietary strategies within folivory, reflected in behavioral, morphological, and microbiota diversity across species. These conditions make lemurs an ideal study system for understanding adaptation to leaf-eating. Most folivorous lemurs are also highly endangered. The significance of folivory for conservation outlook is complex. Though generalist folivores may be relatively well equipped to survive habitat disturbance, specialist folivores occupying narrow dietary niches may be less resilient. Characterizing the genetic bases of adaptation to folivory across species and lineages can provide insights into their differential physiology and potential to resist habitat change. We recently reported accelerated genetic change in RNASE1, a gene encoding an enzyme (RNase 1) involved in molecular adaptation in mammalian folivores, including various monkeys and sifakas (genus Propithecus; family Indriidae). Here, we sought to assess whether other lemurs, including phylogenetically and ecologically diverse folivores, might show parallel adaptive change in RNASE1 that could underlie a capacity for efficient folivory. We characterized RNASE1 in 21 lemur species representing all five families and members of the three extant folivorous lineages: 1) bamboo lemurs (family Lemuridae), 2) sportive lemurs (family Lepilemuridae), and 3) indriids (family Indriidae). We found pervasive sequence change in RNASE1 across all indriids, a dN/dS value > 3 in this clade, and evidence for shared change in isoelectric point, indicating altered enzymatic function. Sportive and bamboo lemurs, in contrast, showed more modest sequence change. The greater change in indriids may reflect a shared strategy emphasizing complex gut morphology and microbiota to facilitate folivory. This case study illustrates how genetic analysis may reveal differences in functional traits that could influence species' ecology and, in turn, their resilience to habitat change. Moreover, our results support the contention that not all primate folivores are built the same and highlight the need to avoid generalizations about dietary guild in considering conservation outlook, particularly in lemurs where such diversity in folivory has probably led to extensive specialization via niche partitioning.
The lemurs of Madagascar include numerous species characterized by folivory across several families. Many extant lemuriform folivores exist in sympatry in Madagascar’s remaining forests. These species avoid feeding competition by adopting different dietary strategies within folivory, reflected in behavioral, morphological, and microbiota diversity across species. These conditions make lemurs an ideal study system for understanding adaptation to leaf-eating. Most folivorous lemurs are also highly endangered. The significance of folivory for conservation outlook is complex. Though generalist folivores may be relatively well equipped to survive habitat disturbance, specialist folivores occupying narrow dietary niches may be less resilient. Characterizing the genetic bases of adaptation to folivory across species and lineages can provide insights into their differential physiology and potential to resist habitat change. We recently reported accelerated genetic change in RNASE1, a gene encoding an enzyme (RNase 1) involved in molecular adaptation in mammalian folivores, including various monkeys and sifakas (genus Propithecus; family Indriidae). Here, we sought to assess whether other lemurs, including phylogenetically and ecologically diverse folivores, might show parallel adaptive change in RNASE1 that could underlie a capacity for efficient folivory. We characterized RNASE1 in 21 lemur species representing all five families and members of the three extant folivorous lineages: (1) bamboo lemurs (family Lemuridae), (2) sportive lemurs (family Lepilemuridae), and (3) indriids (family Indriidae). We found pervasive sequence change in RNASE1 across all indriids, a dN/dS value > 3 in this clade, and evidence for shared change in isoelectric point, indicating altered enzymatic function. Sportive and bamboo lemurs, in contrast, showed more modest sequence change. The greater change in indriids may reflect a shared strategy emphasizing complex gut morphology and microbiota to facilitate folivory. This case study illustrates how genetic analysis may reveal differences in functional traits that could influence species’ ecology and, in turn, their resilience to habitat change. Moreover, our results support the body of work demonstrating that not all primate folivores are built the same and reiterate the need to avoid generalizations about dietary guild in considering conservation outlook, particularly in lemurs where such diversity in folivory has probably led to extensive specialization via niche partitioning.
Madagascar’s biodiversity is imperiled by habitat loss and degradation. Furthermore, species may be locally extirpated due to targeted hunting or disease. Translocating at-risk individuals to areas devoid of the species may be an effective conservation intervention. The aye-aye, Daubentonia madagascariensis, is uniquely susceptible to hunting pressure due to a cultural superstition. In June 2018, we reintroduced two aye-ayes in the Anjajavy Reserve, a dry deciduous forest in northwestern Madagascar. The translocated individuals, an adult female and juvenile offspring, were rescued from a neighboring forest that was subjected to pressure from fires and logging. We safely secured and transported the aye-ayes to Anjajavy and put them in a quarantine enclosure, where they were subjected to biomedical and behavioral monitoring. After release in the adjacent, protected forest, we conducted post-release monitoring of the adult female using radio-tracking and scan sampling to determine ranging and activity patterns. We conducted behavioral observations from October 2018 to February 2019 and collected sleeping site data from October 2018 to September 2019. The female aye-aye fed on local resources including Canarium sp. seeds. During the study period, the aye-aye used 31 nests, occupied a home range of approximately 85 ha and travelled, on average, at a pace of 320 meters per hour. Our findings are comparable with published data on wild aye-ayes in other regions of Madagascar, and provide support for future reintroductions of adult aye-ayes, and potentially other endemic species to the natural and protected habitats of Anjajavy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.