Increased freshwater input to the Subpolar North Atlantic from Greenland ice melt and the Arctic could strengthen stratification in deep convection regions and impact the overturning circulation. However, freshwater pathways from the east Greenland shelf to deep convection regions are not fully understood. We investigate the role of strong wind events at Cape Farewell in driving surface freshwaters from the East Greenland Current to the Irminger Sea. Using a high‐resolution model and an atmospheric reanalysis, we identify strong wind events and investigate their impact on freshwater export. Westerly tip jets are associated with the strongest and deepest freshwater export across the shelfbreak, with a mean of 37.5 mSv of freshwater in the first 100 m (with reference salinity 34.9). These wind events tilt isohalines and extend the front offshore, especially over Eirik Ridge. Moderate westerly events are associated with weaker export across the shelfbreak (mean of 15.9 mSv) but overall contribute to more freshwater export throughout the year, including in summer, when the shelf is particularly fresh. Particle tracking shows that half of the surface waters crossing the shelfbreak during tip jet events are exported away from the shelf, either entering the Irminger Gyre, or being driven over Eirik Ridge. During strong westerly wind events, sea ice detaches from the coast and veers toward the Irminger Sea, but the contribution of sea ice to freshwater export at the shelfbreak is minimal compared to liquid freshwater export due to limited sea ice cover at Cape Farewell.
Freshwater input into deep convection regions could affect the overturning circulation. With a set of 15 Consortium for Advanced Research for the Transport of Hydrocarbon in the Environment (CARTHE) drifters and 15 Surface Velocity Program (SVP) drifters, we investigate the circulation over the south‐east Greenland shelf and the potential for off‐shelf freshwater export. Part of the East Greenland Current flow is steered into the East Greenland Coastal Current immediately upstream of Sermilik Trough. Between the trough and Cape Farewell, two separate cores are visible. Just past Cape Farewell drifters are redistributed into a shelfbreak core and a slow eddying shelf flow. A coastal core is reestablished downstream. Exchanges between the shelfbreak and coastal flows take place both on the east and west Greenland shelf, allowing fresher water to be diverted away from the coast. Five of 15 shallower CARTHE drifters were exported, mainly at Cape Farewell. CARTHE motion shows a higher correlation with local winds, which are more favorable for off‐shelf transport in this area.
<p>The Atlantic Meridional Overturning Circulation redistributes heat across the Atlantic and is therefore a critical element of the climate system. Increased freshwater fluxes to the subpolar north Atlantic from the Greenland ice sheet and from the Arctic could lead to a strengthening of stratification in deep convection regions, and impact deep water formation and the overturning circulation. However, this additional freshwater first enters the boundary current on the Greenland shelf, and freshwater pathways from the shelf to deep convection regions are still unclear. In this study, we investigate the possible role of winds in driving short-lived freshwater export events from the south-east Greenland shelf to the deep convection region of the Irminger Sea.</p><p>Along the south-eastern shelf, strong and consistent north-easterly winds tend to restrain fresh surface waters over the shelf. This wind pattern changes at Cape Farewell, where strong westerly winds could lead to across-shelf export. Using a high-resolution model, we identify strong wind events and investigate their impact on freshwater export. The strongest westerly winds, westerly tip jets, are associated with the strongest and deepest freshwater export across the shelfbreak, with a mean of 40.7 mSv of freshwater in the first 100 m (with reference salinity 34.9). These wind events tilt isohalines and extend the front offshore, especially over Eirik Ridge. Moderate westerly events are associated with weaker export across the shelfbreak (mean of 17 mSv) but overall contribute to more freshwater export throughout the year, including in summer, when the shelf is particularly fresh. Particle tracking shows that half of the surface waters crossing the shelfbreak during tip jet events are exported away from the shelf, either entering the Irminger Gyre, or being driven over Eirik Ridge. During strong westerly wind events, sea-ice detaches from the coast and veers towards the Irminger Sea, but the contribution of sea-ice to freshwater export at the shelfbreak is minimal compared to liquid freshwater export.</p>
Increasing freshwater fluxes from the Greenland ice sheet and the Arctic to the Subpolar North Atlantic could cause a freshening of deep convection regions and affect the overturning circulation. However, freshwater pathways from the Greenland shelf to interior seas and deep convection regions are not fully understood. We investigate exchanges of liquid freshwater between the east Greenland shelf and neighboring seas using drifter data from five deployments carried out at different latitudes along the east Greenland shelf in 2019, 2020, and 2021, as well as satellite data and an atmospheric reanalysis. We compute Ekman transport from winds and geostrophic velocity from satellite altimetry at the shelfbreak and identify the Blosseville Basin and Cape Farewell as areas favorable to cross‐shelf exchanges. We further investigate exchange processes in these regions using drifter data. In the Blosseville Basin, drifters are brought off‐shelf toward the Iceland Sea and into the interior of the Basin. As they are advected downstream, they re‐enter the shelf and are driven toward the coast. At Cape Farewell, the wind appears to be the main driver, although on one occasion we found evidence of an eddy turning drifters away from the shelf. The drifters brought off‐shelf at Cape Farewell mostly continue around Eirik Ridge, where they re‐enter the West Greenland Current. Overall, the identified export over the east Greenland shelf is limited, small scale, and intermittent, thus unlikely to flux large amount of liquid freshwater into the interior, though exchange processes could enhance mixing in the near‐shelf region.
<p>The Atlantic Meridional Overturning Circulation (AMOC) is predicted to weaken in the 21<sup>st</sup> century as a result of climate change. One of the proposed drivers for such a weakening is the dampening of deep convection in the Subpolar North Atlantic following an increase in freshwater fluxes from the Greenland ice sheet. However, the fresh waters that flow from Greenland and the Arctic to the Subpolar North Atlantic are primarily found over the Greenland shelf, and it is unclear where and how much freshwater is exported from the shelf to the interior seas where deep convection occurs. While the main export of freshwater off the Greenland shelf is likely to occur west of Greenland, the importance of water mass transformation and overturning east of Greenland in the total subpolar AMOC makes it essential to better understand freshwater exchanges between the east Greenland shelf and deep convection regions of the Irminger and Nordic Sea.</p> <p>We investigate these exchanges using drifter data from five deployments carried out at different latitudes along the east Greenland shelf in 2019, 2020 and 2021, as well as satellite data and an atmospheric reanalysis. We compute Ekman transport (from winds) and geostrophic velocity (from satellite altimetry) at the shelfbreak and find that the Blosseville Basin, just upstream of Denmark Strait, and Cape Farewell, are particularly favorable to cross-shelf exchanges. We further investigate exchange processes in these regions using drifter data. In the Blosseville Basin, drifters are brought off-shelf towards the Iceland Sea and into the interior of the Basin, possibly joining the separated EGC. As they flow downstream, they re-enter the shelf and most are driven towards the coast. This exchange appears to be mainly driven by the shape of the bathymetry. At Cape Farewell, the wind appears to be the main driver, although occasionally an eddy seems to turn drifters away from the shelf. The drifters brought off-shelf at Cape Farewell mostly continue around Eirik Ridge, where they re-enter the West Greenland Current. How much of the freshwater signature is lost between leaving the East Greenland Current and entering the West Greenland Current is not clear and will need further study.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.