B cells undergo rapid cell division and affinity maturation in anatomically distinct sites in lymphoid organs called germinal centers (GCs). Homeostasis is maintained in part by B-cell apoptosis. However, the precise contribution of apoptosis to GC biology and selection is not well defined. We developed apoptosis-indicator mice and used them to visualize, purify, and characterize dying GC B cells. Apoptosis is prevalent in the GC with up to half of all GC B cells dying every 6h. Moreover, programmed cell death is differentially regulated in the light zone (LZ) and the dark zone (DZ): LZ B cells die by default if they are not positively selected, whereas DZ cells die when their antigen receptors are damaged by activation-induced cytidine deaminase (AID).
Highlights d MYC expression in light-zone B cells is proportional to the magnitude of T cell help d MYC proportionally regulates the size of light-zone germinal center B cells d MYC amounts dictate division capacity and residence time in the dark zone
Classically, the FSH receptor (FSH-R) mediates its effects through coupling to guanine nucleotide-binding protein alpha S subunit (Galpha(s)) and activation of the cAMP/protein kinase A (PKA) signaling pathway. beta-Arrestins are rapidly recruited to the FSH-activated receptor and play key roles in its desensitization and internalization. Here, we show that the FSH-R expressed in HEK 293 cells activated ERK by two temporally distinct pathways dependent, respectively, on Galpha(s)/PKA and beta-arrestins. Galpha(s)/PKA-dependent ERK activation was rapid, transient, and blocked by H89 (a PKA inhibitor), but it was insensitive to small interfering RNA-mediated depletion of beta-arrestins. beta-Arrestin-dependent ERK activation was slower but more sustained and was insensitive to H89. We identified five Ser/Thr residues in the C terminus of the receptor (638-644) as a major phosphorylation site. Mutation of these residues into Ala (5A FSH-R) significantly reduced the stability of FSH-induced beta-arrestin 1 and 2 interaction when compared with the wild-type receptor. As expected, the 5A FSH-R-mediated cAMP accumulation was enhanced, and its internalization was reduced. In striking contrast, the ability of the 5A FSH-R to activate ERK via the beta-arrestin-dependent pathway was increased. G protein-coupled receptor kinase 5 (GRK5) and GRK6 were required for beta-arrestin-dependent ERK activation by both the wild-type and 5A FSH-R. By contrast, GRK2 depletion enhanced ERK activation by the wild-type FSH-R but not by the 5A FSH-R. In conclusion, we demonstrate the existence of a beta-arrestin-dependent, GRK-regulated mechanism for ERK activation by the FSH-R. A phosphorylation cluster in the C terminus of the FSH-R, identified as a site of beta-arrestin recruitment, positively regulated both desensitization and internalization but negatively regulated beta-arrestin-dependent ERK activation.
IL-17-producing helper T (Th17) cells are critical for host defense against extracellular pathogens but also drive numerous autoimmune diseases. Th17 cells that differ in their inflammatory potential have been described including IL-10-producing Th17 cells that are weak inducers of inflammation and highly inflammatory, IL-23-driven, GM-CSF/IFNγ-producing Th17 cells. However, their distinct developmental requirements, functions and trafficking mechanisms in vivo remain poorly understood. Here we identify a temporally regulated IL-23-dependent switch from CCR6 to CCR2 usage by developing Th17 cells that is critical for pathogenic Th17 cell-driven inflammation in experimental autoimmune encephalomyelitis (EAE). This switch defines a unique in vivo cell surface signature (CCR6−CCR2+) of GM-CSF/IFNγ-producing Th17 cells in EAE and experimental persistent extracellular bacterial infection, and in humans. Using this signature, we identify an IL-23/IL-1/IFNγ/TNFα/T-bet/Eomesodermin-driven circuit driving GM-CSF/IFNγ-producing Th17 cell formation in vivo. Thus, our data identify a unique cell surface signature, trafficking mechanism and T-cell intrinsic regulators of GM-CSF/IFNγ-producing Th17 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.