During unresolved infections, some viruses escape immunological control and establish a persistant reservoir in certain cell types, such as human immunodeficiency virus (HIV), which persists in follicular helper T cells (TFH cells), and Epstein-Barr virus (EBV), which persists in B cells. Here we identified a specialized group of cytotoxic T cells (TC cells) that expressed the chemokine receptor CXCR5, selectively entered B cell follicles and eradicated infected TFH cells and B cells. The differentiation of these cells, which we have called 'follicular cytotoxic T cells' (TFC cells), required the transcription factors Bcl6, E2A and TCF-1 but was inhibited by the transcriptional regulators Blimp1, Id2 and Id3. Blimp1 and E2A directly regulated Cxcr5 expression and, together with Bcl6 and TCF-1, formed a transcriptional circuit that guided TFC cell development. The identification of TFC cells has far-reaching implications for the development of strategies to control infections that target B cells and TFH cells and to treat B cell-derived malignancies.
Type-1 regulatory T (TR1) cells are Foxp3-negative IL-10-producing CD4+ T cells with potent immune suppressive properties but their requirements for lineage development have remained elusive. Here we show that TR1 cells constitute the most abundant regulatory population after allogeneic bone marrow transplantation (BMT), express the transcription factor Eomesodermin (Eomes) and are critical for the prevention of graft-versus-host disease (GVHD). We demonstrate that Eomes is required for TR1 cell differentiation during which it acts in concert with the transcription factor B-lymphocyte-induced maturation protein-1 (Blimp-1) by transcriptionally activating IL-10 expression and repressing differentiation into other Th lineages. We further show that Eomes induction in TR1 cells requires T-bet and donor macrophage-derived IL-27. We thus define the cellular and transcriptional control of TR1 cell differentiation during bone marrow transplantation, opening new avenues to therapeutic manipulation.
The chemokines CCL19, CCL21 and CCL25, by signalling through the receptors CCR7 or CCR9, play critical roles in leukocyte homing. They also bind another heptahelical surface protein, CCX-CKR. CCX-CKR cannot couple to typical chemokine receptor signalling pathways or mediate chemotaxis, and its function remains unclear. We have proposed that it controls chemokine bioavailability. Here, using transfected HEK293 cells, we have shown that both CCX-CKR and CCR7 mediate rapid CCL19 internalisation upon initial chemokine exposure. However, internalised CCL19 was more efficiently retained and degraded after uptake via CCX-CKR. More importantly, CCR7 rapidly became refractory for CCL19 uptake, but the sequestration activity of CCX-CKR was enhanced. These properties endowed CCX-CKR with an impressive ability to mediate progressive sequestration and degradation of large quantities of CCL19, and conversely, prevented CCR7-expressing cells from extensively altering their chemokine environment. These differences may be linked to the routes of endocytosis used by these receptors. CCX-CKR, unlike CCR7, was not critically dependent on b-arrestins or clathrin-coated pits. However, over-expression of caveolin-1, which stabilises caveolae, blocked CCL19 uptake by CCX-CKR while having no impact on other chemokine receptors, including CCR7. These data predict that CCX-CKR scavenges extracellular chemokines in vivo to modify responses through CCR7.See accompanying commentary: http://dx
Key Points
Donor-derived Tc17 cells differentiate early after allogeneic transplant in response to IL-6 and alloantigen presentation by host DCs. Tc17 are highly proinflammatory and pathogenic posttransplant, but exert limited or no GVL activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.