Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. Questions? Contact the NRC Publications Archive team atPublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information. NRC Publications Archive Archives des publications du CNRCThis publication could be one of several versions: author's original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur. NRC Publications Record / Notice d'Archives des publications de CNRC:http://nparc.cisti-icist.nrc-cnrc.gc.ca/eng/view/object/?id=ab1c9b68-9dc8-474c-a7ca-0ed13201ac54 http://nparc.cisti-icist.nrc-cnrc.gc.ca/fra/voir/objet/?id=ab1c9b68-9dc8-474c-a7ca-0ed13201ac54 ABSTRACT: Polymeric nanocarriers are attractive nonviral vectors for gene delivery purposes in vivo. For such applications, numerous physiological and subcellular bottlenecks have to be overcome. In that endeavor, each structural feature of nanocarriers can be optimized with respect to its corresponding challenges. Here, we focused on the interface between a model gene delivery nanocarrier and relevant constituents of the physiological environment. We screened a library of carboxymethylated dextrans (CMD) for the electrostatic coating of positively charged nanocarriers. We evaluated the jointed influence of the CMD molecular weight and charge density upon nanocarrier coating with respect to DNase, small ions, plasma proteins, red blood cells, and target cells. A total of 4 out of 26 CMD coated nanocarriers successfully passed every screening assay, but did not yield increased reporter gene expression in target cells compared to uncoated nanocarriers. The fine-tuning of CMD for nanocarrier coating yielded a relevant shortlist of candidates that will be further tested in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.