Transition metals Ti, Zr, and Hf have a hexagonal close-packed structure (α) at ambient conditions, but undergo phase transformations with increasing temperature and pressure. Of particular significance is the high-pressure hexagonal ω phase which is brittle compared to the α phase. There has been a long debate about transformation mechanisms and orientation relations between the two crystal structures. Here we present the first high pressure experiments with in situ synchrotron x-ray diffraction texture studies on polycrystalline aggregates. We follow crystal orientation changes in Zr, confirming the original suggestion by Silcock for an α→ω martensitic transition for Ti, with (0001)(α)||(1120)(ω), and a remarkable orientation memory when ω reverts back to α.
Editor: J. BrodholtKeywords: crystallographic preferred orientation seismic anisotropy two-phase deformation lower mantle rheology 3D X-ray microtomographyThe lower mantle is estimated to be composed of mostly bridgmanite and a smaller percentage of ferropericlase, yet very little information exists for two-phase deformation of these minerals. To better understand the rheology and active deformation mechanisms of these lower mantle minerals, especially dislocation slip and the development of crystallographic preferred orientation (CPO), we deformed mineral analogs neighborite (NaMgF 3 , iso-structural with bridgmanite) and halite (NaCl, isostructural with ferropericlase) together in the deformation-DIA at the Advanced Photon Source up to 51% axial shortening. Development of CPO was recorded in situ with X-ray diffraction, and information on microstructural evolution was collected using X-ray microtomography. Results show that when present in as little as 15% volume, the weak phase (NaCl) controls the deformation. Compared to single phase NaMgF 3 samples, samples with just 15% volume NaCl show a reduction of CPO in NaMgF 3 and weakening of the aggregate. Microtomography shows both NaMgF 3 and NaCl form highly interconnected networks of grains. Polycrystal plasticity simulations were carried out to gain insight into slip activity, CPO evolution, and strain and stress partitioning between phases for different synthetic two-phase microstructures. The results suggest that ferropericlase may control deformation in the lower mantle and reduce CPO in bridgmanite, which implies a less viscous lower mantle and helps to explain why the lower mantle is fairly isotropic.
The magnetic structure of two natural samples of goethite ([alpha]-FeOOH) with varying crystallinity was analyzed at 15 and 300 K by neutron diffraction. The well crystallized sample has the Pb'nm color space group and remained antiferromagnetic up to 300 K, with spins aligned parallel to the c axis. The purely magnetic 100 peak, identifying this color space group, was clearly resolved. The nanocrystalline sample shows a phase transition to the paramagnetic state at a temperature below 300 K. This lowering of the Néel temperature may be explained by the interaction of magnetic clusters within particles. The nuclear structure, refined with the Rietveld and pair distribution function methods, is consistent with reports in the literature
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.