Macrophage migration inhibitory factor (MIF) has been found to be involved in host resistance to several parasitic infections. To determine the mechanisms of the MIF-dependent responses to Trypanosoma cruzi, we investigated host resistance in MIF-/- mice (on the BALB/c background) during an intraperitoneal infection. We focused on the potential involvement of MIF in dendritic cell (DC) maturation and cytokine production. Following a challenge with 5 x 103 T. cruzi parasites, wild type (WT) mice developed a strong IL-12 response and adequate maturation of the draining mesenteric lymph node DCs and were resistant to infection. In contrast, similarly infected MIF-/- mice mounted a weak IL-12 response, displayed immature DCs in the early phases of infection and rapidly succumbed to T. cruzi infection. The lack of maturation and IL-12 production by the DCs in response to total T. cruzi antigen (TcAg) was confirmed by in vitro studies. These effects were reversed following treatment with recombinant MIF. Interestingly, TcAg-stimulated bone marrow-derived DCs from both WT and MIF-/- mice had increased ERK1/2 MAPK phosphorylation. In contrast, p38 phosphorylation was only upregulated in WT DCs. Reconstitution of MIF to MIF-/- DCs upregulated p38 phosphorylation. The MIF-p38 pathway affected MHC-II and CD86 expression as well as IL-12 production. These findings demonstrate that the MIF-induced early DC maturation and IL-12 production mediates resistance to T. cruzi infection, probably by activating the p38 pathway.
Using STAT6−/− BALB/c mice, we have analyzed the role of STAT6-induced Th2 response in determining the outcome of experimental toxocariasis caused by embryonated eggs of the helminth parasite Toxocara canis. Following T. canis infection wild-type BALB/c mice developed a strong Th2-like response, produced high levels of IgG1, IgE, and IL-4, recruited alternatively activated macrophages, and displayed a moderate pathology in the lungs; however, they harbored heavy parasite loads in different tissues. In contrast, similarly infected STAT6−/− BALB/c mice mounted a weak Th2-like response, did not recruit alternatively activated macrophages, displayed a severe pathology in the lungs, but efficiently controlled T. canis infection. These findings demonstrate that Th2-like response induced via STAT6-mediated signaling pathway mediates susceptibility to larval stage of T. canis. Furthermore, they also indicate that unlike most gastrointestinal helminths, immunity against larvae of T. canis is not mediated by a Th2-dominant response.
The C-type lectin receptor mMGL is expressed exclusively by myeloid antigen presenting cells (APC) such as dendritic cells (DC) and macrophages (Mφ), and it mediates binding to glycoproteins carrying terminal galactose and α- or β-N-acetylgalactosamine (Gal/GalNAc) residues. Trypanosoma cruzi (T. cruzi) expresses large amounts of mucin (TcMUC)-like glycoproteins. Here, we show by lectin-blot that galactose moieties are also expressed on the surface of T. cruzi. Male mMGL knockout (-/-) and wild-type (WT) C57BL/6 mice were infected intraperitoneally with 104
T. cruzi trypomastigotes (Queretaro strain). Following T. cruzi infection, mMGL-/- mice developed higher parasitemia and higher mortality rates compared with WT mice. Although hearts from T. cruzi-infected WT mice presented few amastigote nests, mMGL-/- mice displayed higher numbers of amastigote nests. Compared with WT, Mφ from mMGL-/- mice had low production of nitric oxide (NO), interleukin (IL)-12 and tumor necrosis factor (TNF)-α in response to soluble T. cruzi antigens (TcAg). Interestingly, upon in vitro T. cruzi infection, mMGL-/- Mφ expressed lower levels of MHC-II and TLR-4 and harbored higher numbers of parasites, even when mMGL-/- Mφ were previously primed with IFN-γ or LPS/IFN-γ. These data suggest that mMGL plays an important role during T. cruzi infection, is required for optimal Mφ activation, and may synergize with TLR-4-induced pathways to produce TNF-α, IL-1β and NO during the early phase of infection.
It was previously reported by our group that infection with Taenia crassiceps reduces incidence and severity of inflammatory and autoimmune experimental diseases like type 1 diabetes and experimental autoimmune encephalomyelitis. In this research, we set out to study whether infection with T. crassiceps would affect the development of experimental rheumatoid arthritis (RA). We found that mice infected with the parasite and induced with experimental RA showed similar clinical scores as the noninfected experimental RA group; systemic cytokines were not affected while anti-CII Abs were higher in the infected group. Histological evaluation showed damage in both infected and noninfected experimental RA-induced groups and although some surface molecules such as PDL-2 and MR which are associated with immunomodulatory mechanisms were upregulated in the infected and RA-induced group as compared to the noninfected RA group, they did not exert any changes in the outcome of experimental RA. Thus, we determined that infection with T. crassiceps does not influence the outcome of experimental RA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.