Understanding the salt tolerance mechanism in obligate halophytes provides valuable information for conservation and re-habitation of saline areas. Here, we investigated the responses of three obligate halophytes namely Arthrocnemum macrostachyum, Sarcocornia fruticosa and Salicornia europaea to salt stress (0, 100, 200, 400 and 600 mM NaCl) during their vegetative growth with regard to biomass, ions contents (Na+, K+ and Ca+2), chlorophyll contents, carotenoids, phenolic compounds, flavonoids, and superoxide dismutase, peroxidase and esterase activities. S. europaea showed the lowest biomass, root K+ content, Chl a/b ratio, and carotenoids under salinity. This reduction of biomass is concomitant with the increase in proline contents and peroxidase activity. On the other hand, the promotion of growth under low salinity and maintenance under high salinity (200 and 400 Mm NaCl) in A. Macrostachyum and S. fruticosa are accompanied by an increase in Chl a/b ratio, carotenoids, phenolics contents, and esterase activity. Proline content was decreased under high salinity (400 and 600 mM NaCl) in both species compared to S. europaea, while peroxidase showed the lowest activity in both plants under all salt levels except under 600 mM NaCl in Arthrocnemum macrostachyum compared to S. europaea. These results suggest two differential strategies; (1) the salt tolerance is due to activation of antioxidant enzymes and biosynthesis of proline in S. europaea, (2) the salt tolerance in A. macrostachyum, S. fruticosa are due to rearrangement of chlorophyll ratio and biosynthesis of antioxidant compounds (carotenoids, phenolics and flavonoids) which their cost seem to need less energy than activation of antioxidant enzymes. The differential behavior in halophytes of the same habitat confirms that the tolerance mechanism in halophytes is species-specific which provides new insight about the restoration strategy of saline areas.
Suaeda maritima varieties native to Japan and Egypt were cultured under aseptic conditions. The varieties differed in genetic distance but exhibited similar expression profiles of superoxide dismutase isozyme genes. The expression characteristics of superoxide dismutase (SOD; EC 1.15.1.1) isozyme genes from halophytic Suaeda marit ima plants native to Japan and Egypt were analyzed using young plants grown under aseptic conditions. A phylogenetic tree based on internal transcribed spacer sequences suggested that Egyptian S. maritima is related to European and India S. maritima, while Japanese S. maritima belongs to a separate clade. An in-gel SOD activity staining assay revealed that leaves from both the Egyptian and Japanese varieties showed high levels of CuZn-SOD and Fe-SOD activity, but no Mn-SOD activity; conversely, stems from both varieties showed Mn-SOD activity as well as other SOD isozyme activities. In Japanese S. maritima leaves, SOD activity was increased by incubation in growth medium containing 400 mM NaCl, while Egyptian S. maritima leaves showed elevated SOD activity in the absence of high salt. Genes encoding Mn-SOD and Fe-SOD were isolated from both plant types. RT-PCR analysis revealed that all SOD isozyme-encoding genes were expressed at the same levels in leaves from both plant types grown in normal or high-salt medium. In contrast, the expression of genes encoding choline monooxygenase and betaine aldehyde dehydrogenase, which are involved in betacyanin biosynthesis, was increased in high-salt medium. In leaves of Japanese S. maritima plants, Fe deficiency without high salt exposure preferentially decreased Fe-SOD activity. On the other hand, Fe deficiency with high salt exposure decreased not only Fe-SOD activity but also CuZn-SOD activity, suggesting that Fe availability is involved in the up-regulation of SOD isozymes mediating salt tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.