Biotic selective pressures dominate explanations for the evolutionary ecology of tropical endotherms. Yet, abiotic factors, principally precipitation regimes, shape biogeographical and phenological patterns in tropical regions. Despite its importance, we lack a framework for understanding when, why, and how rain affects endotherms. Here, we review how tropical birds and mammals respond to rain at individual, population, and community levels, and propose a conceptual framework to interpret divergent responses. Diverse direct and indirect mechanisms underlie responses to rainfall, including physiological, top-down, and food-related drivers. Our framework constitutes a roadmap for the empirical studies required to understand the consequences of rainfall variability. Identifying the patterns and mechanisms underpinning responses to temporal variation in precipitation is crucial to anticipate consequences of anthropogenic climate change.
Precipitation and Fitness in Endotherms: Missing Links
HighlightsPrecipitation regimes define patterns of tropical biogeography and seasonality, and are a strong selective force on tropical taxa.
Despite the importance of tropical birds in the development of life history theory, we lack information about demographic rates and drivers of population dynamics for most species. We used a 7‐year (2007–2013) capture‐mark‐recapture dataset from an exceptionally wet premontane forest at mid‐elevation in Costa Rica to estimate apparent survival for seven species of tropical passerines. For four of these species, we provide the first published demographic parameters. Recapture probabilities ranged from 0.21 to 0.53, and annual estimates of apparent survival varied from 0.23 to 1.00. We also assessed the consequences of inter‐annual variation in rainfall on demographic rates. Our results are consistent with inter‐annual rainfall increasing estimates of apparent survival for two species and decreasing estimates for three species. For the three species where we could compare our estimates of apparent survival to estimates from drier regions, our estimates were not consistently higher or lower than those published previously. The temporal and spatial variability in demographic rates we document within and among species highlights the difficulties of generalizing life history characteristics across broad biogeographic gradients. Most importantly, this work emphasizes the context‐specific role of precipitation in shaping tropical avian demographic rates and underscores the need for mechanistic studies of environmental drivers of tropical life histories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.