Salt marshes provide an important and unique habitat for plants and animals. To restore salt marshes, numerous coastal realignment projects have been carried out, but restored marshes often show persistent ecological differences from natural marshes. We evaluate the effects of elevation and marsh topography, which are in turn affected by drainage and livestock grazing, on soil salinity after de-embankment. Salinity in the topsoil was monitored during the first 10 years after de-embankment and compared with salinity in an adjacent reference marsh. Additionally, salinity at greater depths (down to 1.2 m below the marsh surface) was monitored during the first 4 years by measuring the electrical conductivity of the groundwater. Chloride concentration in the top soil strongly decreased with increasing elevation; however, it was not affected by marsh topography, i.e. distance to creek or breach. Chloride concentrations higher than 2 g Cl − /litre were found at elevations below 0.6 m + MHT. Salinization of the groundwater, however, took several years. At low marsh elevations, the salinity of the deep groundwater (at 1.2 m depth) increased slowly throughout the full 4-year period of monitoring but did not reach the level of seawater. Compared to the ungrazed treatment, the grazed treatment led to lower accretion rates, lower soil-moisture content and higher chloride content of soil moisture. The de-embankment of the agricultural grasslands resulted in a rapid increase of soil salinity, although deeper ground-water levels showed a much slower response. Elevation accounted for most of the variation in the salinization of the soil. Grazing may enhance salinity of the top soil.
A summer polder had developed a deficit in surface elevation of about 20 cm in respect to rising sea level during its almost one-hundred-year period of embankment. We addressed the questions whether the distance of the restored site to the intertidal flats and continuation of livestock grazing in the restored site could hamper surface-elevation change during the first 10 years after de-embankment of the summer polder. The surface-elevation change showed similar positive linear relationships with annual tidal flooding in both the reference salt marsh and the restored site, indicating that the surface-elevation change in the restored site was not moderated by the distance from the sea. The surface-elevation change had a clear seasonal pattern with positive values in winter and negative values during summer. The surface-elevation change was 11 mm/year in the grazed reference salt marsh and 7 mm/year in the grazed restored site, but amounted to 17 mm/year in ungrazed exclosures in the restored site, showing that grazing retarded the catching up of the elevation deficit in the restored site. The surface-elevation change within the restored site was higher close to the constructed creeks indicating the inception of levee formation. The surface-elevation change was also positively affected by the proximity of breaches in the embankment, but this effect was less clear than the effect of creeks. We conclude that the surface-elevation deficit may be compensated in the Wadden Sea summer polders by their de-embankment when sediment supply is high, whereas livestock grazing retards this process. Dug creeks increase spatial variation in the restored site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.