By starting from a natural class of robust estimators for generalized linear models based on the notion of quasi-likelihood, we define robust deviances that can be used for stepwise model selection as in the classical framework.We derive the asymptotic distribution of tests based on robust deviances and we investigate the stability of their asymptotic level under contamination. The binomial and Poisson models are treated in detail. Two applications to real data and a sensitivity analysis show that the inference obtained by means of the new techniques is more reliable than that obtained by classical estimation and testing procedures.
We introduce robust tests for testing hypotheses in a general parametric model. These are robust versions of the Wald, scores, and likelihood ratio tests and are based on general M estimators. Their asymptotic properties and influence functions are derived. It is shown that the stability of the level is obtained by bounding the self-standardized sensitivity of the corresponding M estimator. Furthermore, optimally bounded-influence tests are derived for the Wald- and scores-type tests. Applications to real and simulated data sets are given to illustrate the tests' performance
Generalized Linear Latent Variable Models (GLLVM), as de ned in Bartholomew and Knott (1999) enable modelling of relationships between manifest and latent variables. They extend structural equation modelling techniques, which are powerful tools in the social sciences. However, because of the complexity of the log-likelihood function of a GLLVM, an approximation such as numerical integration must be used for inference. This can limit drastically the number of variables in the model and lead to biased estimators. In this paper, we propose a new estimator for the parameters of a GLLVM, based on a Laplace approximation to the likelihood function and which can be computed even for models with a large number of variables. The new estimator can be viewed as a M -estimator, leading to readily available asymptotic properties and correct inference. A simulation study shows its excellent nite sample properties, in particular when compared with a well established approach such as LISREL. A real data example on the measurement of wealth for the computation of multidimentional inequality is analysed to highlight the importance of the methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.