Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.
This article presents a new estimation method for the parameters of a time series model. We consider here composite Gaussian processes that are the sum of independent Gaussian processes which, in turn, explain an important aspect of the time series, as is the case in engineering and natural sciences. The proposed estimation method offers an alternative to classical estimation based on the likelihood, that is straightforward to implement and often the only feasible estimation method with complex models. The estimator furnishes results as the optimization of a criterion based on a standardized distance between the sample wavelet variances (WV) estimates and the model-based WV. Indeed, the WV provides a decomposition of the variance process through different scales, so that they contain the information about different features of the stochastic model. We derive the asymptotic properties of the proposed estimator for inference and perform a simulation study to compare our estimator to the MLE and the LSE with different models. We also set sufficient conditions on composite models for our estimator to be consistent, that are easy to verify. We use the new estimator to estimate the stochastic error's parameters of the sum of three first order Gauss-Markov processes by means of a sample of over 800,000 issued from gyroscopes that compose inertial navigation systems. Supplementary materials for this article are available online.
Generalized Linear Latent Variable Models (GLLVM), as de ned in Bartholomew and Knott (1999) enable modelling of relationships between manifest and latent variables. They extend structural equation modelling techniques, which are powerful tools in the social sciences. However, because of the complexity of the log-likelihood function of a GLLVM, an approximation such as numerical integration must be used for inference. This can limit drastically the number of variables in the model and lead to biased estimators. In this paper, we propose a new estimator for the parameters of a GLLVM, based on a Laplace approximation to the likelihood function and which can be computed even for models with a large number of variables. The new estimator can be viewed as a M -estimator, leading to readily available asymptotic properties and correct inference. A simulation study shows its excellent nite sample properties, in particular when compared with a well established approach such as LISREL. A real data example on the measurement of wealth for the computation of multidimentional inequality is analysed to highlight the importance of the methodology.
Econometrica publishes original articles in all branches of economics-theoretical and empirical, abstract and applied, providing wide-ranging coverage across the subject area. It promotes studies that aim at the unification of the theoretical-quantitative and the empirical-quantitative approach to economic problems and that are penetrated by constructive and rigorous thinking. It explores a unique range of topics each year-from the frontier of theoretical developments in many new and important areas, to research on current and applied economic problems, to methodologically innovative, theoretical and applied studies in econometrics. Econometrica maintains a long tradition that submitted articles are refereed carefully and that detailed and thoughtful referee reports are provided to the author as an aid to scientific research, thus ensuring the high calibre of papers found in Econometrica. An international board of editors, together with the referees it has selected, has succeeded in substantially reducing editorial turnaround time, thereby encouraging submissions of the highest quality. We strongly encourage recent Ph. D. graduates to submit their work to Econometrica. Our policy is to take into account the fact that recent graduates are less experienced in the process of writing and submitting papers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.