The altered permeability characteristics of erythrocytes infected with malaria parasites have been a source of interest for over 30 years. Recent electrophysiological studies have provided strong evidence that these changes reflect transmembrane transport through ion channels in the host erythrocyte plasma membrane. However, conflicting results and differing interpretations of the data have led to confusion in this field. In an effort to unravel these issues, the groups involved recently came together for a week of discussion and experimentation. In this article, the various models for altered transport are reviewed, together with the areas of consensus in the field and those that require a better understanding.
KeywordsPatch-clamp; Ion channels; New permeability pathways; PSAC; Plasmodium; Oxidation It has been known for several decades that Plasmodium falciparum-infected erythrocytes exhibit increased permeability to a wide range of structurally unrelated solutes as the internal parasite matures. These changes are thought to be important for the survival of the parasite. They may be involved in nutrient uptake, metabolite removal, volume regulation and/or
Here we have investigated the inhibitory properties of green tea catechins on the Plasmodium falciparum hexose transporter (PfHT), the Babesia bovis hexose transporter 1 (BboHT1) and the mammalian facilitative glucose transporters, GLUT1 and GLUT5, expressed in Xenopus laevis oocytes. (−)-Epicatechin-gallate (ECG) and (−)-epigallocatechin-gallate (EGCG) inhibited d-glucose transport by GLUT1 and PfHT, and d-fructose transport by GLUT5, with apparent Ki values between 45 and 117 μM. BboHT1 was more potently inhibited by the ungallated catechins (−)-epicatechin (EC) and (−)-epigallocatechin (EGC), with apparent Ki values of 108 and 168 μM, respectively. Site-directed mutagenesis experiments provided little further support for previously reported models of catechin binding to hexose transporters. Furthermore, P. falciparum growth inhibition by catechins was not affected by the external d-glucose concentration. Our results provide new data on the inhibitory action of catechins against sugar transporters but were unable to elucidate the antimalarial mechanism of action of these agents.
Glucose is the primary source of energy and a key substrate for most cells. Inhibition of cellular glucose uptake (the first step in its utilization) has, therefore, received attention as a potential therapeutic strategy to treat various unrelated diseases including malaria and cancers. For malaria, blood forms of parasites rely almost entirely on glycolysis for energy production and, without energy stores, they are dependent on the constant uptake of glucose. Plasmodium falciparum is the most dangerous human malarial parasite and its hexose transporter has been identified as being the major glucose transporter. In this review, recent progress regarding the validation and development of the P. falciparum hexose transporter as a drug target is described, highlighting the importance of robust target validation through both chemical and genetic methods. Therapeutic targeting potential of hexose transporters of other protozoan pathogens is also reviewed and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.