Most optical sensors on the market are optical fiber Bragg grating (FBG) sensors with low reflectivity (typically 7-40%) and low side-lobe suppression (SLS) ratio (typically SLS <15 dB), which prevents these sensors from being effectively used for long-distance remote monitoring and sensor network solutions. This research is based on designing the optimal grating structure of FBG sensors and estimating their optimal apodization parameters necessary for sensor networks and long-distance monitoring solutions. Gaussian, sine, and raised sine apodizations are studied to achieve the main requirements, which are maximally high reflectivity (at least 90%) and side-lobe suppression (at least 20 dB), as well as maximally narrow bandwidth (FWHM<0.2 nm) and FBGs with uniform (without apodization). Results gathered in this research propose high-efficiency FBG grating apodizations, which can be further physically realized for optical sensor networks and long-distance (at least 40 km) monitoring solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.