The next generation "Stage-4" ground-based cosmic microwave background (CMB) experiment, CMB-S4, consisting of dedicated telescopes equipped with highly sensitive superconducting cameras operating at the South Pole, the high Chilean Atacama plateau, and possibly northern hemisphere sites, will provide a dramatic leap forward in our understanding of the fundamental nature of space and time and the evolution of the Universe. CMB-S4 will be designed to cross critical thresholds in testing inflation, determining the number and masses of the neutrinos, constraining possible new light relic particles, providing precise constraints on the nature of dark energy, and testing general relativity on large scales.CMB-S4 is intended to be the definitive ground-based CMB project. It will deliver a highly constraining data set with which any model for the origin of the primordial fluctuations-be it inflation or an alternative theory-and their evolution to the structure seen in the Universe today must be consistent. While we have learned a great deal from CMB measurements, including discoveries that have pointed the way to new physics, we have only begun to tap the information encoded in CMB polarization, CMB lensing and other secondary effects. The discovery space from these and other yet to be imagined effects will be maximized by designing CMB-S4 to produce high-fidelity maps, which will also ensure enormous legacy value for CMB-S4. CMB-S4 is the logical successor to the Stage-3 CMB projects which will operate over the next few years. For maximum impact, CMB-S4 should be implemented on a schedule that allows a transition from Stage 3 to Stage 4 that is as seamless and as timely as possible, preserving the expertise in the community and ensuring a continued stream of CMB science results. This timing is also necessary to ensure the optimum synergistic enhancement of the science return from contemporaneous optical surveys (e.g., LSST, DESI, Euclid and WFIRST). Information learned from the ongoing Stage-3 experiments can be easily incorporated into CMB-S4 with little or no impact on its design. In particular, additional information on the properties of Galactic foregrounds would inform the detailed distribution of detectors among frequency bands in CMB-S4. The sensitivity and fidelity of the multiple band foreground measurements needed to realize the goals of CMB-S4 will be provided by CMB-S4 itself, at frequencies just below and above those of the main CMB channels. This timeline is possible because CMB-S4 will use proven existing technology that has been developed and demonstrated by the CMB experimental groups over the last decade. There are, to be sure, considerable technical challenges presented by the required scaling-up of the instrumentation and by the scope and complexity of the data analysis and interpretation. CMB-S4 will require: scaled-up superconducting detector arrays with well-understood and robust material properties and processing techniques; high-throughput mmwave telescopes and optics with unprecedented precisi...
We consider the possibility that the black-hole (BH) binary detected by LIGO may be a signature of dark matter. Interestingly enough, there remains a window for masses 20 M M bh 100 M where primordial black holes (PBHs) may constitute the dark matter. If two BHs in a galactic halo pass sufficiently close, they radiate enough energy in gravitational waves to become gravitationally bound. The bound BHs will rapidly spiral inward due to emission of gravitational radiation and ultimately merge. Uncertainties in the rate for such events arise from our imprecise knowledge of the phase-space structure of galactic halos on the smallest scales. Still, reasonable estimates span a range that overlaps the 2 − 53 Gpc −3 yr −1 rate estimated from GW150914, thus raising the possibility that LIGO has detected PBH dark matter. PBH mergers are likely to be distributed spatially more like dark matter than luminous matter and have no optical nor neutrino counterparts. They may be distinguished from mergers of BHs from more traditional astrophysical sources through the observed mass spectrum, their high ellipticities, or their stochastic gravitational wave background. Next generation experiments will be invaluable in performing these tests.The nature of the dark matter (DM) is one of the most longstanding and puzzling questions in physics. Cosmological measurements have now determined with exquisite precision the abundance of DM [1, 2], and from both observations and numerical simulations we know quite a bit about its distribution in Galactic halos. Still, the nature of the DM remains a mystery. Given the efficacy with which weakly-interacting massive particlesfor many years the favored particle-theory explanationhave eluded detection, it may be warranted to consider other possibilities for DM. Primordial black holes (PBHs) are one such possibility [3-6].Here we consider whether the two ∼ 30 M black holes detected by LIGO [7] could plausibly be PBHs. There is a window for PBHs to be DM if the BH mass is in the range 20 M M 100 M [8,9]. Lower masses are excluded by microlensing surveys [10][11][12]. Higher masses would disrupt wide binaries [9,13,14]. It has been argued that PBHs in this mass range are excluded by CMB constraints [15,16]. However, these constraints require modeling of several complex physical processes, including the accretion of gas onto a moving BH, the conversion of the accreted mass to a luminosity, the self-consistent feedback of the BH radiation on the accretion process, and the deposition of the radiated energy as heat in the photon-baryon plasma. A significant (and difficult to quantify) uncertainty should therefore be associated with this upper limit [17], and it seems worthwhile to examine whether PBHs in this mass range could have other observational consequences.In this Letter, we show that if DM consists of ∼ 30 M BHs, then the rate for mergers of such PBHs falls within the merger rate inferred from GW150914. In any galactic halo, there is a chance two BHs will undergo a hard scatter, lose energy to a s...
No abstract
Primordial black holes (PBHs) have long been a candidate for the elusive dark matter (DM), and remain poorly constrained in the ∼ 20 − 100 M mass range. PBH binaries were recently suggested as the possible source of LIGO's first detections. In this paper, we thoroughly revisit existing estimates of the merger rate of PBH binaries. We compute the probability distribution of orbital parameters for PBH binaries formed in the early Universe, accounting for tidal torquing by all other PBHs, as well as standard large-scale adiabatic perturbations. We then check whether the orbital parameters of PBH binaries formed in the early Universe can be significantly affected between formation and merger. Our analytic estimates indicate that the tidal field of halos and interactions with other PBHs, as well as dynamical friction by unbound standard DM particles, do not do significant work on nor torque PBH binaries. We estimate the torque due to baryon accretion to be much weaker than previous calculations, albeit possibly large enough to significantly affect the eccentricity of typical PBH binaries. We also revisit the PBH-binary merger rate resulting from gravitational capture in present-day halos, accounting for Poisson fluctuations. If binaries formed in the early Universe survive to the present time, as suggested by our analytic estimates, they dominate the total PBH merger rate. Moreover, this merger rate would be orders of magnitude larger than LIGO's current upper limits if PBHs make a significant fraction of the dark matter. As a consequence, LIGO would constrain ∼ 10 − 300 M PBHs to constitute no more than ∼ 1% of the dark matter. To make this conclusion fully robust, though, numerical study of several complex astrophysical processes -such as the formation of the first PBH halos and how they may affect PBH binaries, as well as the accretion of gas onto an extremely eccentric binary -is needed.
This document on the CMB-S4 Science Case, Reference Design, and Project Plan is the product of a global community of scientists who are united in support of advancing CMB-S4 to cross key thresholds in our understanding of the fundamental nature of space and time and the evolution of the Universe. CMB-S4 is planned to be a joint National Science Foundation (NSF) and Department of Energy (DOE) project, with the construction phase to be funded as an NSF Major Research Equipment and Facilities Construction (MREFC) project and a DOE High Energy Physics (HEP) Major Item of Equipment (MIE) project. At the time of this writing, an interim project office has been constituted and tasked with advancing the CMB-S4 project in the NSF MREFC Preliminary Design Phase and toward DOE Critical Decision CD-1. DOE CD-0 is expected imminently.CMB-S4 has been in development for six years. Through the Snowmass Cosmic Frontier planning process, experimental groups in the cosmic microwave background (CMB) and broader cosmology communities came together to produce two influential CMB planning papers, endorsed by over 90 scientists, that outlined the science case as well as the CMB-S4 instrumental concept [1, 2]. It immediately became clear that an enormous increase in the scale of ground-based CMB experiments would be needed to achieve the exciting thresholdcrossing scientific goals, necessitating a phase change in the ground-based CMB experimental program. To realize CMB-S4, a partnership of the university-based CMB groups, the broader cosmology community, and the national laboratories would be needed.The community proposed CMB-S4 to the 2014 Particle Physics Project Prioritization Process (P5) as a single, community-wide experiment, jointly supported by DOE and NSF. Following P5's recommendation of CMB-S4 under all budget scenarios, the CMB community started in early 2015 to hold biannual workshops -open to CMB scientists from around the world -to develop and refine the concept. Nine workshops have been held to date, typically with 150 to 200 participants. The workshops have focused on developing the unique and vital role of the future ground-based CMB program. This growing CMB-S4 community produced a detailed and influential CMB-S4 Science Book [3] and a CMB-S4 Technology Book [4]. Over 200 scientists contributed to these documents. These and numerous other reports, workshop and working group wiki pages, email lists, and much more may be found at the website http://CMB-S4.org.Soon after the CMB-S4 Science Book was completed in August 2016, DOE and NSF requested the Astronomy and Astrophysics Advisory Committee (AAAC) to convene a Concept Definition Taskforce (CDT) to conduct a CMB-S4 concept study. The resulting report was unanimously accepted in late 2017. 1 One recommendation of the CDT report was that the community should organize itself into a formal collaboration. An Interim Collaboration Coordination Committee was elected by the community to coordinate this process. The resulting draft bylaws were refined at the Spring 2018 CMB-S4...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.