There is an increasing appreciation for the role of the human Y chromosome in phenotypic differences between the sexes in health and disease. Previous studies have shown that genetic variation within the Y chromosome is associated with cholesterol levels, which is an established risk factor for atherosclerosis, the underlying cause of coronary artery disease (CAD), a major cause of morbidity and mortality worldwide. However, the exact mechanism and potential genes implicated are still unidentified. To date, Y chromosome-linked long non-coding RNAs (lncRNAs) are poorly characterized and the potential link between these new regulatory RNA molecules and hepatic function in men has not been investigated. Advanced technologies of lncRNA subcellular localization and silencing were used to identify a novel intergenic Y-linked lncRNA, named lnc-KDM5D-4, and investigate its role in fatty liver-associated atherosclerosis. We found that lnc-KDM5D-4 is retained within the nucleus in hepatocytes. Its knockdown leads to changes in genes leading to increased lipid droplets formation in hepatocytes resulting in a downstream effect contributing to the chronic inflammatory process that underpin CAD. Our findings provide the first evidence for the implication of lnc-KDM5D-4 in key processes related to fatty liver and cellular inflammation associated with atherosclerosis and CAD in men.
Coronary artery disease (CAD) is one of the leading causes of morbidity and mortality globally. In the last few years our understanding of the genetic and molecular mechanisms that promote CAD in individuals has increased with the advent of the genome era. This complex inflammatory disease has well-defined environmental risk factors. However, in the last 10 years, studies including genome-wide association studies (GWAS) have clearly demonstrated a genetic influence on CAD. Recently, studies on the human Y chromosome have also demonstrated that genetic variation within the male-specific region of the Y chromosome (MSY) could play a part in determining cardiovascular risk in men, confirming the notion that the increased risk for CAD in men cannot be fully explained through common CAD risk factors. Here, we review the literature about the pathophysiology of CAD, its potential causes and environmental risk factors known so far. Furthermore, we review the genetics of CAD, especially the latest discoveries regarding the implication of the Y chromosome, the most underexplored portion of the human genome to date, highlighting methods and difficulties arising in this research field, and discussing the importance of considering the Y chromosome in CAD research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.