In Brazil, an epidemic of Zika virus (ZIKV) infections was declared in 2015 that coincided with alarming reports of microcephaly in newborns associated with mother infection. Although the virus has placental tropism, changes in the tissue morphology and immunity of infected patients have not yet been elucidated. Here, we investigated the histopathological and ultrastructural changes along with the immunological profile and the BDNF expression in rare placental material. Tissues were obtained in the 2015–2016 Brazilian epidemic, of ten ZIKV-infected patients during pregnancy, five resulting in cases of fetal microcephaly and five non-microcephaly, compared to five non-infected control placentae. Viral antigens were only detected in samples from the ZIKV infected patients. Infected placentae presented histopathological severe damage, while the ultrastructural evaluation showed abnormal organelles, such as clusters of virus-like particles consistent with the ZIKV dimensions. Increased infiltration of CD68
+
and TCD8
+
cells, expression of MMPs, cytokines (IFN-γ and TNF-α) and other immunological mediators (RANTES/CCL5 and VEGFR-2) confirmed excessive inflammation and vascular permeability dysfunction. An evaluation of BDNF showed a decrease that could modulate neuronal damage in the developing fetus. The placental changes caused by ZIKV are not pathognomonic, however, the data provide evidence that this infection leads to severe placental injury.
Zika virus (ZIKV) infection during pregnancy can cause a set of severe abnormalities in the fetus known as congenital Zika syndrome (CZS). Experiments with animal models and in vitro systems have substantially contributed to our understanding of the pathophysiology of ZIKV infection. Here, to investigate the molecular basis of CZS in humans, we used a systems biology approach to integrate transcriptomic, proteomic, and genomic data from the postmortem brains of neonates with CZS. We observed that collagens were greatly reduced in expression in CZS brains at both the RNA and protein levels and that neonates with CZS had several single-nucleotide polymorphisms in collagen-encoding genes that are associated with osteogenesis imperfecta and arthrogryposis. These findings were validated by immunohistochemistry and comparative analysis of collagen abundance in ZIKV-infected and uninfected samples. In addition, we showed a ZIKV-dependent increase in the expression of cell adhesion factors that are essential for neurite outgrowth and axon guidance, findings that are consistent with the neuronal migration defects observed in CZS. Together, these findings provide insights into the underlying molecular alterations in the ZIKV-infected brain and reveal host genes associated with CZS susceptibility.
High-risk human papillomaviruses are closely associated with cervical cancer and its precursor lesions through interactions between the E6 and E7 oncoproteins and the cell-cycle regulatory proteins, such as p53 and pRb, respectively. As other molecules involved in the cell-cycle control seem to be important for human papillomavirus (HPV)-mediated cervical carcinogenesis, we have analyzed the expression of p53, p21, p16, cyclin D1, and Ki-67 and the presence of HPV (HPV pool and HPV-16) by immunohistochemical studies using tissue microarray in low squamous intraepithelial lesions (n=50), high squamous intraepithelial lesions (n=98), and cervical carcinoma (n=18). We have found a significant increase in the expression of p16 and p21 (P<0.001) from low- to high-grade lesions and cancer. In contrast, cyclin D1 expression showed a significant decrease in more severe lesions (P<0.001). p16, Ki-67, p21, and p53 positivity increased with the cell-layer level and the lesion severity, with stronger correlations being observed for p16 and Ki-67. High positivity for HPV pool (96.3%) and HPV-16 (77.5%) immunostaining was detected in all cases, with an association between p16 and cyclin D1 expression and HPV-16 infection. Our tissue microarray results corroborate the usefulness of the immunohistochemical assessment of cell-cycle biomarkers in distinguishing different groups of precursor lesions of the cervix and cervical carcinoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.