Cases of SARS-CoV-2 infection in Manaus, Brazil, resurged in late 2020, despite previously high levels of infection. Genome sequencing of viruses sampled in Manaus between November 2020 and January 2021 revealed the emergence and circulation of a novel SARS-CoV-2 variant of concern. Lineage P.1, acquired 17 mutations, including a trio in the spike protein (K417T, E484K and N501Y) associated with increased binding to the human ACE2 receptor. Molecular clock analysis shows that P.1 emergence occurred around mid-November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.7–2.4-fold more transmissible, and that previous (non-P.1) infection provides 54–79% of the protection against infection with P.1 that it provides against non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness.
Consellho Nacional de Desenvolvimento e Pesquisa (CNPq), Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ).
Brazil currently has one of the fastest growing SARS-CoV-2 epidemics in the world. Owing to limited available data, assessments of the impact of non-pharmaceutical interventions (NPIs) on virus spread remain challenging. Using a mobility-driven transmission model, we show that NPIs reduced the reproduction number from >3 to 1–1.6 in São Paulo and Rio de Janeiro. Sequencing of 427 new genomes and analysis of a geographically representative genomic dataset identified >100 international virus introductions in Brazil. We estimate that most (76%) of the Brazilian strains fell in three clades that were introduced from Europe between 22 February11 March 2020. During the early epidemic phase, we found that SARS-CoV-2 spread mostly locally and within-state borders. After this period, despite sharp decreases in air travel, we estimated multiple exportations from large urban centers that coincided with a 25% increase in average travelled distances in national flights. This study sheds new light on the epidemic transmission and evolutionary trajectories of SARS-CoV-2 lineages in Brazil, and provide evidence that current interventions remain insufficient to keep virus transmission under control in the country.
OVID-19 is a severe acute respiratory infection (SARI) that emerged in early December 2019 in Wuhan, China 1. The outbreak was declared a public health emergency of international concern by the World Health Organization on 30 January 2020. COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an enveloped, single-stranded positive-sense RNA virus that belongs to the Betacoronavirus genus and Coronaviridae family 2. SARS-CoV-2 is closely related genetically to bat-derived SARS-like coronaviruses 3. Human-to-human transmission occurs primarily via respiratory droplets and direct contact, similar to human influenza viruses, SARS-CoV and Middle East respiratory syndrome coronavirus 4. The most commonly reported clinical symptoms are fever, dry cough, fatigue, dyspnoea, anosmia, ageusia, or some combination of these 1,4,5. As of 16 June 2020, more than 7.9 million cases have been confirmed worldwide, resulting in 434,796 deaths 6. Brazil declared COVID-19 a national public health emergency on 3 February 2020 7. After the development of a national emergency plan and the early establishment of molecular diagnostic facilities across Brazil's network of public health laboratories, the country reported its first confirmed COVID-19 case on 25 February 2020, in a traveller returning to São Paulo from northern Italy 8. São Paulo is the largest city in South America and no other Brazilian city receives a greater proportion of international flights 9. Currently, Brazil has one of the fastest-growing COVID-19 epidemics in the world, now accounting for 1,864,681 cases and 72,100 deaths, comprising over 55% of the total number of reported cases in Latin America and the Caribbean (as of 14 July 2020) 6. About 21% of Latin American and Caribbean populations are estimated to be at risk of severe COVID-19 illness 10. The region has been experiencing large outbreaks, with growing epidemics in Brazil,
The yellow fever virus (YFV) epidemic in Brazil is the largest in decades. The recent discovery of YFV in Brazilian Aedes species mosquitos highlights a need to monitor the risk of reestablishment of urban YFV transmission in the Americas. We use a suite of epidemiological, spatial, and genomic approaches to characterize YFV transmission. We show that the age and sex distribution of human cases is characteristic of sylvatic transmission. Analysis of YFV cases combined with genomes generated locally reveals an early phase of sylvatic YFV transmission and spatial expansion toward previously YFV-free areas, followed by a rise in viral spillover to humans in late 2016. Our results establish a framework for monitoring YFV transmission in real time that will contribute to a global strategy to eliminate future YFV epidemics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.